
Isabelle/Isar — a versatile environment for
human-readable formal proof documents

Markus M. Wenzel
Lehrstuhl für Software & Systems Engineering

Institut für Informatik
Technische Universität München

Institut für Informatik
der Technischen Universität München

Lehrstuhl für Software & Systems Engineering

Isabelle/Isar — a versatile environment for
human-readable formal proof documents

Markus Michael Wenzel

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Christoph Zenger

Prüfer der Dissertation:

1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Univ.-Prof. Dr. Helmut Schwichtenberg
Ludwig-Maximilians-Universität München

Die Dissertation wurde am 25. September 2001 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 30. Januar 2002
angenommen.

Zusammenfassung

Diese Arbeit möchte maschinelle Beweise einem breiteren Publikum zugänglich
machen. Die hierzu eingeführte formale Sprache Isar erlaubt Beweis Dokumente
auf einem für menschliche Leser angemessenen Niveau zu verfassen. Die logische
Fundierung erfolgt durch Interpretation als abstrakte Inferenzen im Isabelle Sy-
stem. Die Isabelle/Isar Umgebung ist generisch bezüglich Objekt-Logiken und
Beweiswerkzeugen, und unterstützt gleichermaßen Natürliches Schließen sowie
algebraische Umformungen. Anwendungen aus der Logik, Mathematik und In-
formatik belegen die Vielseitigkeit und Praxistauglichkeit der Isar Konzepte.

Abstract

The basic motivation of this work is to make formal theory developments with
machine-checked proofs accessible to a broader audience. Our particular ap-
proach is centered around the Isar formal proof language that is intended to
support adequate composition of proof documents that are suitable for human
consumption. Such primary proofs written in Isar may be both checked by the
machine and read by human-beings; final presentation merely involves trivial
pretty printing of the sources. Sound logical foundations of Isar are achieved
by interpretation within the generic Natural Deduction framework of Isabelle,
reducing all high-level reasoning steps to primitive inferences.

The resulting Isabelle/Isar system is generic with respect to object-logics and
proof tools, just as pure Isabelle itself. The full Isar language emerges from a
small core by means of several derived elements, which may be combined freely
with existing ones. This results in a very rich space of expressions of formal
reasoning, supporting many viable proof techniques. The general paradigms of
Natural Deduction and Calculational Reasoning are both covered particularly
well. Concrete examples from logic, mathematics, and computer-science demon-
strate that the Isar concepts are indeed sufficiently versatile to cover a broad
range of applications.

Acknowledgements

I am indebted to numerous people who have influenced this work in one way
or the other (in alphabetical order): Andreas Abel, David Aspinall, Gertrud
Bauer, Henk Barendregt, Stefan Berghofer, Bernd Grobauer, John Harrison,
Florian Kammüller, Gerwin Klein, Ralph Matthes, Stephan Merz, Olaf Müller,
Wolfgang Naraschewski, Tobias Nipkow, David von Oheimb, Larry Paulson,
Leonor Prensa Nieto, Cornelia Pusch, Norbert Schirmer, Helmut Schwichten-
berg, Monika Seisenberger, Sebastian Skalberg, Konrad Slind, Martin Strecker,
Freek Wiedijk, and Vincent Zammit.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 3

1.2.1 Real theorem proving environments 3
1.2.2 Experiments on human-readable proofs 9

1.3 The Isar approach to formal proof documents 10
1.4 Notions of proof according to Isar 14
1.5 Example: the Knaster-Tarski Theorem 16

1.5.1 Presentation format: typeset document output 16
1.5.2 Primary proof: human-readable source 17
1.5.3 Primitive format: internal proof terms 20

1.6 Overview of the thesis . 21
1.6.1 Part I: Foundations . 21
1.6.2 Part II: Techniques . 21
1.6.3 Part III: Applications . 22

I Foundations 23

2 Preliminaries 25
2.1 Basic mathematical notions . 25
2.2 Minimal Higher-Order Logic . 27

2.2.1 Types and terms . 28
2.2.2 Propositions and theorems 29

2.3 Definitional theory extensions 31
2.3.1 Simple definitions . 32
2.3.2 Weakened definitions . 32
2.3.3 Overloaded definitions . 33

2.4 Higher-order resolution . 33
2.4.1 Hereditary Harrop Formulas 34
2.4.2 Fundamental inference rules 35

2.5 The Isabelle/Pure framework . 37

v

vi CONTENTS

3 The Isar proof language 41
3.1 Introduction . 41
3.2 Syntax and semantics . 43

3.2.1 Isar commands . 44
3.2.2 Basic types of commands 45
3.2.3 Isar/VM transitions . 47
3.2.4 Recovering static syntax 56

3.3 Generic support for natural deduction 58
3.3.1 Context elements . 58
3.3.2 Methods and attributes 59
3.3.3 Derived commands . 61

3.4 Further concepts . 62
3.4.1 Casual term abbreviations 63
3.4.2 Formal comments and antiquotations 64
3.4.3 Type inference and polymorphism 65

4 Example: First-Order Logic 69
4.1 Formal development . 69

4.1.1 Syntax . 69
4.1.2 Propositional logic . 70
4.1.3 Equality . 71
4.1.4 Quantifiers . 71

4.2 Discussion . 72
4.2.1 Generic proof support for object-logics 72
4.2.2 Natural deduction schemes 74
4.2.3 Declarative versus operational theorem proving 76
4.2.4 Further expressions of natural deduction 82

II Techniques 93

5 Advanced natural deduction 95
5.1 Introduction . 95
5.2 Basic techniques . 97

5.2.1 General context elements 97
5.2.2 Local facts and goals . 102
5.2.3 Mixed forward and backward reasoning 103
5.2.4 Raw proof blocks . 105
5.2.5 Non-atomic statements 108

5.3 Generalized elimination . 111
5.3.1 Obtaining contexts . 112
5.3.2 Supporting realistic soundness proofs 113
5.3.3 Common patterns of generalized elimination 115

5.4 Proof by cases and induction . 120
5.4.1 Immediate patterns of cases and induction 120
5.4.2 Rules and cases . 123

CONTENTS vii

5.4.3 Proof methods . 124
5.4.4 Common patterns of cases and induction 125
5.4.5 Induction with non-atomic statements 132

5.5 Discussion . 136
5.5.1 Context manipulations in Mizar 136
5.5.2 Second-order schemes in Mizar and DECLARE 138
5.5.3 Generalized case-splitting 141

6 Calculational reasoning 145
6.1 Introduction . 145
6.2 Foundations of calculational reasoning 147

6.2.1 Calculational sequences 147
6.2.2 Calculational elements within the proof language 148
6.2.3 Rules and proof search 151

6.3 Common patterns of calculational reasoning 152
6.3.1 Variation of rules . 152
6.3.2 Variation of conclusions 155
6.3.3 Variation of facts . 156
6.3.4 Variation of general structure 158

6.4 Discussion . 158
6.4.1 Iterated equalities in Mizar 158
6.4.2 Dijkstra’s universal calculational proof format 161
6.4.3 Degenerate calculations and big-step reasoning 165

III Applications 173

7 The Isabelle/HOL application environment 175
7.1 The HOL logic . 175

7.1.1 Simply-typed set theory 176
7.1.2 Primitive definitions . 177

7.2 Advanced definitional packages 180
7.2.1 Inductive sets and types 180
7.2.2 Recursive function definitions 186
7.2.3 Extensible records . 188
7.2.4 Axiomatic type classes 189

7.3 Automated proof methods . 191
7.3.1 Incorporating arbitrary proof tools 192
7.3.2 Basic types of proof methods 193

7.4 The main Isabelle/HOL library 196
7.5 Discussion . 198

7.5.1 Theory specifications versus proofs 198
7.5.2 Proof methods and relevance of facts 202

viii CONTENTS

8 Example: Higher-Order Logic 207
8.1 Minimal Higher-Order Logic . 207

8.1.1 Simply-typed lambda-terms 207
8.1.2 Basic logical connectives 208

8.2 Extensional equality . 209
8.3 Further connectives . 211

8.3.1 Definitions . 211
8.3.2 Derived rules . 212

8.4 Classical logic . 216
8.5 Hilbert’s choice operator . 218
8.6 Concrete types and type definitions 219

8.6.1 Basic characterization of type definitions 220
8.6.2 Derived rules of type definitions 222

8.7 Discussion: Isar techniques . 224

9 Example: Rational numbers 229
9.1 Motivation . 229
9.2 Quotient types . 232

9.2.1 Equivalence relations and quotient types 232
9.2.2 Equality on quotients . 233
9.2.3 Picking representing elements 234

9.3 Rational numbers . 235
9.3.1 Fractions over integers 236
9.3.2 Rational numbers . 240

9.4 Discussion . 245
9.4.1 Isar techniques . 245
9.4.2 HOL techniques . 249
9.4.3 Arithmetic proof tools . 253

10 Example: Unix security 257
10.1 Motivation . 257
10.2 Introduction . 260

10.2.1 The Unix philosophy . 260
10.2.2 Unix security . 261
10.2.3 Odd effects . 262

10.3 Unix file-systems . 263
10.3.1 Names . 263
10.3.2 Attributes . 264
10.3.3 Files . 264
10.3.4 Initial file-systems . 266
10.3.5 Accessing file-systems . 266

10.4 File-system transitions . 267
10.4.1 Unix system calls . 267
10.4.2 Basic properties of single transitions 270
10.4.3 Iterated transitions . 272

10.5 Executable sequences . 274

CONTENTS ix

10.5.1 Possible transitions . 274
10.5.2 Example executions . 275

10.6 Odd effects — treated formally 278
10.6.1 The general procedure 278
10.6.2 The particular setup . 279
10.6.3 Invariance lemmas . 280
10.6.4 Putting it all together . 284

10.7 Discussion . 284
10.7.1 Isar techniques . 284
10.7.2 Efficiency of Isabelle/Isar proof processing 291

11 Conclusion 297
11.1 Stocktaking . 297
11.2 Future work . 299

Bibliography 303

Index 315

x CONTENTS

List of Figures

1.1 Interactive development with Proof General 19

3.1 Basic types of Isar commands . 45
3.2 Transitions of Isar proof processing 48
3.3 Transitions of tactical theorem proving 48

7.1 Definitional packages of Isabelle/HOL 181
7.2 Main theory library of Isabelle/HOL 197

8.1 HOL type definition . 220

xi

xii LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

The general idea of “formalizing” human reasoning already has a long tradition,
reaching at least back to ancient Greek philosophy. The “calculemus” manifest
of Leibniz may be seen as a more recent incident, aimed to supersede philo-
sophical disputes by a formalized process to “decide” the truth of statements.
Purely syntactic underpinning of formal reasoning (with mechanical checking
of proofs) has finally matured during the 20th century, although the claims on
universal truth had to be dismissed. Roughly speaking in the first half of the
century, logicians have demonstrated that mathematics could in principle be
completely reduced to a few logical principles. In the second half of the cen-
tury, the advent of computers has enabled to build systems for actually doing
non-trivial developments in formal logic.
At some point in the history of computer-based reasoning, visionaries of “ar-
tificial intelligence” proclaimed that it was possible to build fully automated
theorem provers that would be able to conduct substantial mathematical proof
developments without human intervention! Whereas many automated reason-
ing techniques have been devised over several decades, they have proven to be
rather limited in practice, being useful only for restricted technical problems.
Over the last 10–20 years, a different tradition of interactive theorem proving
has become quite successful in supporting reasonably sized formal theory devel-
opments. Interactive proving proceeds by instructing the machine (the “proof
checker”) step-by-step, until the intended result is achieved eventually. The
individual reasoning steps may vary in granularity, ranging from single rules
to invocations of automated proof procedures (for local problems). Such semi-
automated reasoning systems have been able to cover significant applications
from areas of pure logic, mathematics and computer-science (e.g. mathematical
background theories, abstract models of hardware and software systems, pro-
gramming language semantics, algorithms and functional programs). Note that

1

2 CHAPTER 1. Introduction

new (deep) mathematical results are normally not discovered by proof develop-
ment on the machine. There are also some practical limits on verifying concrete
hardware or software systems at large (this market has basically moved over
to model-checking and testing lately, trading actual verification for systematic
finding of errors).

Despite the relative success of theorem proving in certain areas, there are still
fundamental obstacles in addressing a broader range of users, even those with
some interest in formal logic and proof itself. The full potential of applications
of semi-automated reasoning has probably not been unleashed yet.
The rather paradoxical problem is that most interactive proof systems do not
support an adequate notion of proof (speaking from the human perspective).
Major systems are still too much oriented towards technical issues of certain
logical calculi and their implementation on the machine. The input is given by
slightly arcane languages of proof scripts, which are difficult to understand later
on; proof developers typically need to replay existing scripts to recover some
idea of the actual reasoning process. This situation is bad enough for proof
maintenance, but is impossible for communicating formal proofs to a wider
audience. It also poses a particular problem for derivative work, based on the
formal theory development of previous authors.

From the methodological viewpoint, interactive proof development is similar to
programming, although proving is slightly more involved in practice. Successful
proof checking typically demands a good portion of experimentation, either to
convince the machine of “obviously correct” reasoning steps, or to figure out
“minor omissions” in the initial claim (or the underlying definitions). On the
other hand, theorem proving has the fundamental advantage that the intended
results (i.e. theorems) are usually completely specified in advance, so the sub-
sequent proof may only fail, but not produce a wrong result (at least for sound
implementations of proof checkers). In principle, this enables proof scripts to
be expressed in an arbitrarily “bad” manner without affecting the result.
From the perspective of programming language design, which has undergone
several decades of research itself, proof development still seems to be stuck
at the assembly language level. There have been several attempts to improve
the technological backdrop of theorem proving, again by drawing from com-
mon ideas of program development. Notable approaches include various user
interfaces for theorem provers, presentation and management of sources (e.g. as
in “literate programming”), visualization or verbalization of machine-oriented
proof structures (e.g. by natural language generation), specific infrastructure
for “proving in the large” (via module systems, change management of proofs
etc.), and large-scale repositories of theory developments (e.g. “mathematical
knowledge bases”). All of these are legitimate research issues within the vicin-
ity of formal proof development, but they do not address the core problem of
low-level proof representations in the first place.
We shall illustrate this discrepancy again in terms of programming. The effort
required to work with a slightly low-level language like “C” may be consider-

1.2. Related work 3

ably reduced by external tool support, e.g. by automatic code generation from
abstract graphical presentations that are composed by means of a nice user-
interface. Such an environment merely uses “C” as a fronted, but does not
overcome its inherent deficiencies, which become again relevant if the output
needs to be augmented manually. In contrast, a considerably more powerful
programming language (like ML or Haskell) could have provided first-class pre-
sentations of high-level concepts itself, eliminating the need for heavy tool sup-
port in the first place. (Some kind of tool support could still become useful at
a later stage.)

Our work is motivated by the perceived lack of accessible proof representations
for semi-automated reasoning. The Isabelle/Isar environment to be introduced
here is intended as a viable basis for human-readable proof documents, which
are composed by the user and checked by the machine. The main focus will
be on the theory and practice of the Isar proof language (“Isar” abbreviates
“Intelligible semi-automated reasoning”). We particularly aim at preserving
important factors that have made interactive theorem proving a success so far.
We also intend to cover at least the same range of applications as existing
interactive provers, but expect to unleash further potential of semi-automated
reasoning due to the new quality of formal proofs achieved by Isar.

1.2 Related work

Over the last few decades, a large number of systems have been built that
are intended for “theorem proving” in one way or the other. The overview
of “mathematics in the computer” [Wiedijk, 2001a] lists over 130 entries in
the categories of “First Order Prover”, “Logic Education”, “Proof Checker”,
“Tactic Prover”, or “Theorem Prover”. This list only covers systems that are
sufficiently significant and still available.
In order to point out relevant related work of Isabelle/Isar we shall briefly
review a few notable systems, both “real” working environments and some recent
studies on human-readable proof representations. Further discussions of existing
approaches will be given later on, alongside of our exposition of Isar itself.

1.2.1 Real theorem proving environments

Theorem proving systems that qualify as “real” working environments are typ-
ically based on expressive formal languages (type theory or set theory), feature
user-guided proof development (usually interactive), and have been successfully
applied “in reality” by a considerable number of users. Below we consider im-
portant representatives of this category: HOL, Coq, Isabelle, PVS, and Mizar.
There certainly exist a few further contenders in the same league, such as Nuprl
[Constable et al., 1986] or ACL2 [Kaufmann et al., 2000].

4 CHAPTER 1. Introduction

HOL

There is a whole family of HOL systems, which all share the same logical foun-
dations and system architecture. The “official” line is represented by HOL88
[Gordon, 1988] [Gordon and Melham, 1993], HOL90 (K. Slind), and the still cur-
rent HOL98 (K. Slind and M. Norrish). There have been a few side branches as
well, including the commercial implementation Proof Power (R. Arthan of ICL
Secure Systems), and HOL-Light [Harrison, 1996a] which has been successfully
employed for industrial verification tasks of floating point arithmetic. See also
[Gordon, 2000] for further background information on HOL and its relatives.
The HOL logic is based on a version of Church’s “Simple Theory of Types”
[Church, 1940] [Henkin, 1950] [Andrews, 1986], which has been extended by
schematic polymorphism, first-order type constructors, and a semantic type
definition scheme [Gordon, 1985a] [Gordon, 1985b] [Pitts, 1993]. The HOL
methodology emphasizes a strictly definitional discipline of theory development;
arbitrary axiomatizations are largely considered harmful by the user commu-
nity. Starting from the rather small axiomatic basis of primitive HOL, standard
mathematical concepts may be developed with reasonable effort. Over the years,
HOL users have collected a large body of material.
The system architecture of HOL follows the pioneering approach of LCF [Gordon
et al., 1979], based on Milner’s “Correctness by Construction” principle. Here a
small trusted kernel implements primitive inferences of the basic logic, using a
strongly-typed functional programming language such as ML. Any further func-
tions written by users may never “invent” new theorems, but are restricted to the
abstract theorem constructors of the kernel (by virtue of type-safety of the pro-
gramming language). Thus one achieves a high degree of reliability, while avoid-
ing to store actual proof objects for independent checking (which is required for
systems implemented in untyped languages like LISP, such as AUTOMATH [de
Bruijn, 1980] [Nederpelt et al., 1994]). The “LCF architecture” has enabled
efficient implementation of many advanced proof tools (e.g. rewriting, classical
proof procedures) and derived specification mechanisms (such as inductive sets
and types, cf. the discussion in [Harrison, 1995]), without affecting soundness of
the logical core. Even more importantly, contributors need not understand the
underlying logic in full detail.
HOL does not enforce a standard paradigm to produce proven results. In prin-
ciple, primitive and derived rules (written in ML) may be invoked directly,
mapping existing theorems to new ones. Nevertheless, most users follow the
goal-oriented view of tactical theorem proving: an initial claim is refined by
backwards steps until a solved form is achieved. The ML specification for such
transformation steps is quite hard to follow in general, even if the original writer
has refrained from any ad-hoc programming, restricting the script to standard
tactics and tactic combinators. HOL is often perceived as rather cryptic for
outsiders, not only due to the inherent complexities of tactical proof scripts,
but also due to the details of concrete syntax within raw ML. There is also no
clear distinction between extending and using the system, as both involves ML.

1.2. Related work 5

There have been several attempts to organize HOL proofs in a more accessible
manner, e.g. by generating textual reports on the dynamic evolution of goal
states [Cohn, 1995]. Alternative proof styles (still within the tactical approach)
have been proposed as well, e.g. a generalized version of calculational reason-
ing called “window inference” [Grundy, 1991]. Some notable experiments on
structured proof languages within HOL have been conducted as well, see §1.2.2.

Coq

Coq [Barras et al., 1999] essentially draws from the same tradition of interactive
theorem proving as the HOL family, but follows a rather different philosophy in
many respects.
The logical foundation of Coq is the “Calculus of Inductive Constructions”
(CIC), i.e. a constructive type theory with builtin notions of inductive types
and recursive functions [Pfenning and Paulin-Mohring, 1990] [Paulin-Mohring,
1993]. Proofs are internally represented as dependently typed λ-terms, which
are explicitly stored for separate checking by a distinctive system component.
Even though Coq has been implemented in a type-safe programming language,
Milner’s “Correctness by Construction” of LCF/HOL has been given up in favor
of the venerable “de-Bruijn principle”, with independent checking of static proof
objects [de Bruijn, 1980] (see also the survey of [Barendregt and Geuvers, 2001]).
In practice, both Coq and HOL achieve a similar level of reliability, but Coq
demands significantly more time and space resources in realistic applications.
Coq provides particular infrastructure to extract functional programs from con-
structive proofs. In principle, the internal λ-term structure of proof objects may
be automatically compiled to produce ML code. In practice, users interested in
program extraction need to be careful to conduct proofs properly, in order to
arrive at programs conforming to their intention. In particular, concepts need
to be arranged appropriately at the level of inductive Set or logical Prop types.
Coq renounces the free programmability of HOL, but offers separate languages
for theory specifications (called “Gallina”) and tactical proof scripts, respec-
tively. Here the raw ML view has been successfully replaced by sane concrete
syntax. Users may still implement their own proof tools, but this is rarely re-
quired in practice. Coq generally provides much less automated proof support
than HOL: whereas existing classical first-order techniques of automated rea-
soning may be used within classical higher-order logic quite easily, proof search
within a constructive setting is much more involved. Interestingly, many Coq
users who are interested in large applications tend to introduce non-constructive
axioms in the very beginning in order to ease the formalization effort (even
though this breaks the program extraction facility). This constructively incor-
rect tuning of the formal basis would in principle admit more powerful proof
procedures, but official Coq does not support classical reasoning specifically.
Coq tactic scripts and primitive proof terms are both largely inaccessible to
human readers. Traditionally, some of the key developers of Coq have been

6 CHAPTER 1. Introduction

more interested in getting formal proofs accepted by the machine at all (and
maybe extract programs later), rather than achieve nice presentations for human
readers. Nonetheless, significant work on rendering primitive proof objects (λ-
terms) in natural language (English or French) has been undertaken in the past
[Coscoy et al., 1995]. A similar verbalization facility is provided by the Minlog
system [Benl et al., 1998] (for its own proof terms). The HELM project [Asperti
et al., 2001] aims at WWW access of formal theories at large (currently working
mainly for Coq), but the fundamental problems of adequate representation of
proof terms are still there, despite the XML document view provided here.

Isabelle

Isabelle [Paulson and Nipkow, 1994] is positioned as a “generic theorem proving
environment” according to the LCF/HOL tradition of interactive systems, but is
aimed to support many logics. According to its original author the early history
of Isabelle is a “tale of errors, not grand designs” [Paulson, 1990]. Apart from the
generic framework (Isabelle/Pure), the Isabelle distribution includes concrete
object-logics that are ready for immediate applications, notably Isabelle/HOL
[Nipkow et al., 2001] [Nipkow and Paulson, 2001] (simply-typed classical set-
theory), Isabelle/HOLCF [Regensburger, 1995] [Müller et al., 1999] (domain
theory within HOL), and Isabelle/ZF [Paulson, 1993] [Paulson, 1995] (untyped
set-theory according to Zermelo-Fraenkel).
The Isabelle/Pure framework implements minimal higher-order logic, with un-
restricted universal quantification “

∧
”, implication “=⇒”, and equality “≡”.

Rules formulated via
∧

/=⇒may be composed by higher-order resolution (which
also involves higher-order unification) [Paulson, 1986]. Resolution is the most
fundamental reasoning principle of Isabelle, it admits both forward and back-
ward chaining of natural-deduction rules [Paulson, 1989]. Derived rules are rep-
resented directly as meta-level theorems, eliminating the need for hand-written
ML code as in the LCF/HOL family. Generic higher-order rewriting (by means
of ≡ rules) is also available, as well as classical reasoning tools [Paulson, 1997]
[Paulson, 1999] that may be instantiated for many important logics.
Formalizing new object-logics (following natural-deduction principles) is quite
easy in Isabelle, merely by providing a few declarations of abstract and concrete
syntax, and primitive proof rules. On the other hand, a realistic working en-
vironment like Isabelle/HOL demands many years of further work in order to
develop a sufficiently rich library of standard mathematical concepts. Practi-
cal applications also demand advanced specification mechanisms (which need to
be implemented separately), notably inductive sets and types [Paulson, 1994]
[Berghofer and Wenzel, 1999], and recursive functions [Slind, 1996] [Slind, 1997].
The majority of Isabelle users only refer to Isabelle/HOL, ignoring the other
object-logics and the facilities to define new ones. Nevertheless, Isabelle/HOL
benefits from the generic framework, which provides a cleaner view on general
logical concepts than the more specialized implementations of the original HOL
family. Isabelle generally appears slightly less cryptic to its users. Separate

1.2. Related work 7

concrete syntax for theory specifications has been provided early [Paulson and
Nipkow, 1994]; proof scripts have become more and more stylized as well, using
a few generic tactics (parameterized by theorems) instead of a large collection of
special invocations. Worldwide Isabelle/HOL users have been able to conduct
many significant applications over the past few years. Presently the biggest
one is probably the formalization of the Java programming language by the
Isabelle/Bali project [Oheimb, 2001] [Bali]. Further “official” examples and
significant applications are included in [Isabelle library] (which also covers other
object-logics than Isabelle/HOL).
The standard way of formal reasoning in Isabelle resembles the tactical back-
wards style of HOL and Coq. Some past experiments on improved presentations
[Simons, 1996] [Simons, 1997] have covered a literate programming view for the-
ories and proof scripts, and special tactics to support idioms of calculational
reasoning (following the approach of [Dijkstra and Scholten, 1990]).

PVS

PVS [Owre et al., 1996] (distributed by the SRI) is advertised as a tightly in-
tegrated environment for specification, proof checking, and model checking. Its
most prominent features are predicate subtypes, a collection of well-integrated
algebraic decision procedures, and an easily accessible user-interface for inter-
active theory and proof development.
The logic of PVS is usually presented as another version of “higher-order logic”,
although it considerably deviates from the one of HOL. In particular, HOL’s
distinctive view on schematic polymorphism and semantic type definitions is
unavailable in PVS. In fact, the PVS logic is better understood as a version
of set-theory, where certain aspects of set-membership reasoning have been sin-
gled out as a specific concept of “predicate subtypes”. Type checking conditions
(TCCs) are extracted and solved automatically, although the user needs to in-
teract in difficult cases (by means of ordinary PVS proof tools). The resulting
discipline approximates the casual treatment of typing in informal mathematics
reasonably well. Furthermore, there is specific notation for subtypes of Carte-
sian products and function spaces, which are presented as “dependent types”,
analogous to Σ and Π in real type theories.
PVS offers powerful definitional mechanisms for algebraic datatypes and well-
founded recursive functions. These have been based on set-theoretic principles
according to a later paper on the “official” PVS semantics [Owre and Shankar,
1997]. The handsome integration of algebraic proof tools (including arithmetic
semi-decision procedures) enables users to “grind” many everyday proof prob-
lems, without demanding much insight into logical details. PVS also provides
a language of “strategies” that resembles the tactical ones of HOL, Coq, or
Isabelle, but does not admit arbitrary programming or proof search.
The PVS implementation is monolithic, consisting of a large body of LISP code.
The sources are not generally available, although interested parties may take

8 CHAPTER 1. Introduction

a look at the SRI (and sometimes even change a few details). The advanced
proof tools and specification mechanisms are hardwired, without full reduction
to basic logical concepts inside. Over the years, seasoned users of PVS have
encountered a number of serious problems in practice, not just soundness issues
of proving false results, but also unexpected failures. The known soundness bugs
of PVS are not considered a real problem by its proponents. The focus of PVS
has been changed from a “Prototype Verification System” to a tool for finding
errors in formal models of software and hardware systems, which is actually
falsification instead of verification. Indeed, PVS has been quite successful in
this respect, attracting a considerable number of users lately.
PVS shows how far the paradigm of interactive theorem proving may get to
the pragmatic side of “computer-aided verification”. Most users only have a
marginal interest in formal logic and proofs themselves. So far there has been
rather little interest in human-oriented representations of proofs in PVS.

Mizar

Mizar [Rudnicki, 1992] [Trybulec, 1993] has emerged from a project on pro-
gram verification for Algol in the 1970’s (both “Algol” and “Mizar” are Arabic
names for certain stars). At some point it was felt that a reasonably body of
mathematical background theories are required before being able to verify ac-
tual programs. The main focus of the Mizar project has shifted towards further
development of the enormous [Mizar library], while the Mizar system itself has
changed very little recently. New library entries are periodically published in
the “Journal of Formalized Mathematics”.
The most notable aspect of Mizar is its structured proof language, which has
been designed to represent common mathematical proof patterns in a formal
setting. The Mizar language is tightly integrated with its particular logical
background, namely classical first-order logic with an axiomatic basis of typed
set-theory (according to Tarski-Grothendieck), some special support for “second
order” schemas (e.g. induction), and a particular notion of mathematical struc-
tures. The proof language provides separate elements to cover proof principles
from raw first-order logic, e.g. universal introduction, existential introduction
and elimination (two versions), and disjunction elimination by cases. Further-
more, there is a builtin notion of “obvious” reasoning steps in order to finish
terminal situations. The latter also covers first-order steps that lack a separate
proof language element (e.g. universal elimination and disjunction introduction).
According to its authors, Mizar is “notorious for lack of documentation”. New
users are typically instructed directly by Mizar experts. Some partial documen-
tation has eventually become available [Muzalewski, 1993]. The more detailed
overview of [Wiedijk, 1999] provides an approximation of the main Mizar proof
language elements in terms of plain natural deduction. The full details of Mizar
proof processing have not been published so far; even the sources of the imple-
mentation are unavailable.

1.2. Related work 9

Apparently, Mizar represents a rather different tradition of theorem proving
than the mainstream tactical systems (HOL, Coq, Isabelle, PVS etc.), with re-
spect to the logic, the proof language, and the system architecture. The Mizar
project has been very successful in building up a large body of machine-checked
mathematical theories. On the other hand, Mizar also has some inherent limi-
tations, mostly due to its “closed” approach. For example, there is no practical
way to add new proof tools (say a flexible rewriting engine), or provide new
specification mechanisms (say inductive sets and recursive functions). Conse-
quently, many advanced concepts need to be simulated directly in the text by
existing Mizar elements: rewriting is typically expressed by long chains of single
equational reasoning steps, and inductive definitions are constructed manually
on top of primitive set-theoretic concepts over and over again [Mizar library].
The structured proof language of Mizar is the main communication format be-
tween the user and the machine, and also between users themselves (e.g. when
composing new theories based on existing ones). Nevertheless, the default view
of the WWW presentation of [Mizar library] omits proofs. There have also been
some past experiments on rendering Mizar texts in natural language [Bancerek
and Carlson, 1993], but this output format is rarely encountered in practice.

1.2.2 Experiments on human-readable proofs

The relative success of flexible tactical theorem provers on the one hand, and
structured mathematical proofs in Mizar on the other hand have stimulated
some further research on human-readable proofs in recent years. This has even-
tually resulted in several experimental systems that focus on accessible repre-
sentations of formal proofs themselves.

The “Mizar mode for HOL” [Harrison, 1996b] provides an alternative inter-
face for interactive proof composition in HOL (notably HOL-Light [Harrison,
1996a]), transferring useful ideas from the Mizar proof language into the tacti-
cal setting of HOL. Harrison introduces separate concrete syntax for structured
proof commands that are translated to special tactics inside, which perform
basic transformations according to natural deduction schemes of raw first order
logic. Harrison also spends substantial effort on automated reasoning support,
for solving “trivial” situations implicitly (the concrete procedure may be ex-
changed by the user). The Mizar mode also covers a calculational reasoning
style, which refers to a collection of mixed transitivity rules declared in the
context (of =/</≤ or similar relations). The system has been sufficiently de-
veloped to conduct some example proofs from classical analysis, covering a few
pages of text; it has not been applied any further, though.

DECLARE [Syme, 1997a] [Syme, 1998] is a stand-alone prototype system for
“declarative” proof development, which acts like a compiler for formal docu-
ments consisting of theory specifications and structured proof outlines. The
proof language is based on three main principles, namely “first-order decom-
position and enrichment”, “second-order schema application”, and “appeals to

10 CHAPTER 1. Introduction

automation”. DECLARE has been advertised as “three tactic theorem prov-
ing” [Syme, 1999]. The system draws from the general experience of the HOL
family (and Harrison’s Mizar mode), but renounces established principles like
full reduction to basic logical principles inside. DECLARE has been success-
fully applied by its author in some significant case-studies on Java type-safety
and operational semantics [Syme, 1998]. In fact, many concepts of DECLARE
have been specifically designed towards such typical applications of language
modeling, with particular support for inductive definitions and proof schemes.
DECLARE did not aim at more general applications, and has not been evalu-
ated any further in practice (the system is not publicly available).

The “Structured Proof Language” (SPL) [Zammit, 1999a] [Zammit, 1999b] aims
at providing another interface for proof construction in mainstream HOL, draw-
ing from general Mizar ideas and the experience with Harrison’s Mizar mode.
SPL has been intended for larger scale applications, just like DECLARE, but
is more careful to stay within the logical foundations of HOL. All high-level
concepts of SPL are reduced to primitive HOL tactics. Zammit also spends
significant effort on powerful first-order proof tools in HOL, in order to sup-
port reasoning in large steps. Another focus is on implicit simplifications (via
rewriting). The SPL/HOL system has been evaluated by its author by formal-
izing some portions of group theory, attempting to achieve the same level of
“abstraction” encountered in the informal proofs of a certain textbook.

“Mizar-Light for HOL-Light” [Wiedijk, 2001b] represents a minimal system ex-
periment (implemented in 42 lines of ML) that achieves a readable view on
first-order tactical proof schemes, mainly by exhibiting propositions explicitly
in the text instead of implicitly in goal configurations.

Systems in the important class of “teaching tools for formal logic” often provide
readable textual representations of proofs as well, although most seem to prefer
graphical views. In any case, such systems are typically restricted to primitive
inferences in pure logic, where users may occasionally specify their own set of
rules, but advanced proof procedures are unavailable.
The teaching tool ProveEasy [Burstall, 1998] provides an interactive editor for
primitive natural-deduction proof texts presented in a strictly backwards man-
ner; the underlying structure is oriented towards the established λ-calculus view
of type theory. Here the main idea is to make the types of sub-terms (i.e. propo-
sitions of local facts) visible in the text.
Tutch [Abel et al., 2001] is a strictly text-oriented proof-checker intended for
teaching constructive logic. The system deliberately excludes any kind of user
interface, but acts like a batch-mode compiler of proof texts written in plain
ASCII. Thus students are encouraged to focus on the task of actually writing
proofs, rather than play with fancy interfaces. Proof steps in Tutch range from
primitive natural deduction to more abstract arrangements of the “assertion
level”. Nevertheless, the system refrains arbitrary proof search, but implements
an efficient algorithm for structured proof checking.

1.3. The Isar approach to formal proof documents 11

1.3 The Isar approach to formal proof documents

The primary subject of the present work is a particular approach to human-
readable formal proof documents called “Isar”, which abbreviates “Intelligible
semi-automated reasoning”. Isar covers the following levels of discourse.

1. A specific view on the problem space of formal proof (see §1.4 and §1.5).
We shall introduce the categories of primitive, primary, and presentation
formats of proofs. Thus we are able to identify the most basic compo-
nents of our architecture, including the notion of human-readable proof
documents that Isar places into the very center.

2. A concrete design of the Isar proof language as a viable basis for high-
level proof texts following the general paradigm of natural deduction (see
chapter 3). A number of additional concepts, mostly extra-logical ones,
lift the underlying logical framework to a sufficiently abstract level that is
adequate for human consumption.

Particular care has been taken to keep the Isar language succinct. In fact,
substantial parts of the language are defined as derived elements on top of
simpler notions. The resulting framework is highly compositional, with a
large combinatorial space of useful expressions ranging from simple idioms
to advanced proof patterns (see also chapter 5 and chapter 6).

3. A system implementation called Isabelle/Isar [Wenzel, 2001a], which has
been built on top of the generic natural deduction framework as provided
by Isabelle/Pure [Paulson and Nipkow, 1994] (see also chapter 2). Being
rooted at this generic level, common Isabelle object-logics may benefit
directly from Isar without requiring any substantial changes (apart from
some minor adaptations of existing theory libraries). New object-logics
may be commenced by using Isar proof elements from the very start (e.g.
see chapter 4 and chapter 8).

Isabelle/HOL [Nipkow et al., 2001] shall serve as the main workhorse for
concrete examples to be presented later on. Such an advanced working en-
vironment demands a few further logic-specific provisions, notably proper
integration with derived specification mechanisms (see also chapter 7).
Taking the existing Isabelle/HOL setup as a starting point, we are able to
provide viable support for “realistic” applications from mathematics and
computer-science (e.g. see chapter 9 and chapter 10).

Isar aims at a truly versatile environment, with the following particular goals.

• Succinct language design, with few basic principles that may be combined
freely. Maximum modularity of all language concepts.

We shall only take the most fundamental language elements as primitive,
and define further concepts as derived ones (while preserving the potential

12 CHAPTER 1. Introduction

for combined use with existing elements). Beyond this basic language layer
we refrain from any further special abbreviations, but prefer simple idioms
consisting of a few “words” in Isar. Generally speaking the Isar language
is intended to support lively expression of formal reasoning, based on a
relatively small vocabulary and some universal grammatical rules.

• Incremental proof processing, as suitable for interactive development.

As a lesson learned from interactive tactical proving we observe that real-
istic development of “semi-automatic” proofs demands some experimenta-
tion by the writer. Step-wise evaluation of Isar proof texts may also enable
beginning users to experiment with key logical concepts, e.g. the discharge
behavior of assumptions in a particular context. From the perspective of
readers, the incremental way of Isar proof processing induces some bias
towards left-to-right interpretation, corresponding strictly to the order of
language elements given in the text.

• Independence of particular object-logics, within the general framework of
natural deduction.

Our rationale is to cover all “mainstream” object-logics of Isabelle (FOL,
ZF, HOL, HOLCF etc.), essentially by arranging the Isar concepts at the
generic level of the Isabelle/Pure framework. This does not mean that
“unusual” representations of object-logics benefit from Isar in the same
way, though. For example, existing formalizations of linear and modal
logics simulate sequent-calculus rules within the pure natural deduction
framework, which would result in slightly impractical Isar proof texts.

• Independence of particular automated reasoning techniques.

Automated proof search shall be never seen as a core issue of Isar proof
processing, although existing procedures may be easily incorporated as
“proof methods”. The Isar proof language shall enforce a well-defined
structure of proof texts, despite potentially ill-behaved proof tools involved
in individual steps; proof methods may only operate on isolated portions
of the main Isar proof configuration.

• Guarantee soundness by full reduction to basic logical principles.

We intend to make actual formal proofs available in practice, which means
that a reasonable form of internal proof presentation (in terms of basic
logical principles) needs to be achieved eventually.

• Reduce accidental “formal noise” in common reasoning patterns, avoid
unnecessary cluttering of proof texts.

The danger of obscuring formal proof texts by irrelevant detail is ever
present. Interestingly, tactical systems have occasionally been apt to let
certain technical details intrude the course of reasoning performed by the
user, which did not necessarily change the situation of unstructured proof
scripts fundamentally. In Isar we need to be more careful, as reasoning

1.3. The Isar approach to formal proof documents 13

steps appear explicitly in the text. Adequate structured proof patterns
typically demand a few subtle details to be got right. (A particularly illus-
trative example of successful formal-noise reduction is that of “induction
with non-atomic statements”, see §5.4.5).

• Provide a stable working environment that is usable by other people (apart
from the original architect).

Arriving at a realistic system is not just a matter of spending considerable
efforts on mere implementation issues. Even more importantly, the very
Isar concepts themselves need to be sufficiently simple and mature, pro-
viding a faithful model structured proofs. This certainly requires feedback
from concrete applications conducted in Isabelle/Isar.

Isar follows a few general design principles, so the resulting framework is not just
an arbitrary arrangement of certain ingredients, but acquires a distinctive style.
Such slightly more philosophical underpinning certainly does have an impact on
achieving our goals, although this is not always spelled out explicitly.

• Primacy of readability over writability.

As we intend to produce human-readable proof texts eventually, we really
need to take the (potentially large) audience of readers more seriously than
writers (who are usually more versed in formal-logic and technical details
of the proof system anyway). Composition of accessible presentations
certainly does demand some effort in any case, not just in the context of
formal reasoning. The task of being an author of Isar proof documents
should not be taken lightly.

Another consequence is that readers do not need any special tools to access
proof texts, but may refer to traditional printed paper (or the “electronic
paper” of PDF). In contrast, writers usually do require some specific tool
support for interactive proof development.

• Refer to common principles of “sane” language designs.

We generally draw from the standard repertoire of minor issues that have
emerged over the last decades in high-level programming language design,
e.g. block structure and static scoping of local variables.

• Liberality, or abusus non tollit usus.

We generally prefer rather generic concepts that admit useful applications
in many situations, despite a potentially pending danger of “inadequate”
uses under certain circumstances. A notable instance of this principle is
the flexible way that arbitrary proof methods (based on tactics inside)
may be incorporated into Isar proofs. There are also a few “improper”
language elements that enable Isabelle/Isar to absorb the old tactical style
of Isabelle completely.

14 CHAPTER 1. Introduction

The open design of the Isar language enables proofs to be written in al-
most arbitrarily bad style. Nevertheless, it should be easier to compose
adequate texts by default, although this requires some taste of the author.

• Separation of primitives versus policy.

We explicitly distinguish two different aspects of Isar proof processing,
namely logical primitives and the policy enforced by interpreting certain
language elements. In particular, we refrain from treating the Isar lan-
guage as another “calculus” itself, despite its inherent relation to formal
logic. Thus we achieve a clear separation of concerns, enabling us to think
about the Isar language in extra-logical categories.

1.4 Notions of proof according to Isar

The very notion of “proof” is hard to pin down exactly, depending on the
context of discourse. We refrain from attempting a universal definition, but
merely provide specific views on the problem space as relevant for Isar.

First of all, proofs shall be always required to be fully formal in the strong
sense that any resulting theorems are guaranteed to be actually reduced to
basic logical inferences (within a well-defined background theory). In practice,
this means that proofs need to be processed mechanically by a (trusted) proof
checker component. Nevertheless, users should not necessarily bother about the
actual internal representations of proofs. (Just like ML programmers normally
do not need to know about the machine-language that is executed eventually.) In
fact, that low-level view would be quite counter-productive for our objective of
human-readable proofs. Primitive derivations are apt to obscure the intentions
of formal reasoning, which has historically made many people reject the idea of
proof formalization altogether, if they have ever been exposed to it anyway.

In Isar we differentiate the following three levels of formal proof.

1. Presentation format.

This is the final material given to recipients, i.e. the audience of (human)
readers of proofs.

2. Primary proofs.

The main communication format between the proof development system
and the user, i.e. the (human) writer of proofs.

3. Primitive representation.

The internal structure of basic inferences that serves as the very foundation
of correct results.

1.4. Notions of proof according to Isar 15

Various theorem proving systems exhibit quite different ideas of proofs at these
three levels. Even a single system may offer different options for these categories.
For example, the Coq system [Barras et al., 1999] is based on dependently-
typed λ-terms as the primitive format. The primary view is that of tactical
proof scripts. Moreover, Coq provides two formats for presentation, either a
pretty-printed output of the primary script, or a rendering of primitive λ-terms
in natural language [Coscoy et al., 1995].
The HOL system [Gordon, 1985a] [Gordon and Melham, 1993] [Gordon, 2000]
provides a rather different view on the these levels of proof. Here the primitive
layer consists of abstract theorem constructors of the inference kernel, according
to “Correctness by Construction” by Milner. HOL offers several primary views
on top, ranging from direct access to forward inferences to the goal-centered
paradigm of tactical proving (users may also implement their own proof con-
struction mechanisms). The standard presentation format of HOL provides a
pretty-printed version of the sources, with some visual enhancement of mathe-
matical symbols [Gordon and Melham, 1993].

In Isar we shall take the following particular view on these three levels of proof
(see also the example in §1.5).

1. Presentation produces “formal proof documents”, consisting of a beauti-
fied version of the primary sources. The Isabelle/Isar document prepa-
ration system automatically takes care of this, as a side-effect of formal
proof processing. The final documents are meant to resemble traditional
mathematical texts, with high-quality typesetting based on LATEX. No at-
tempt is made on any significant transformations of the primary text, e.g.
we refrain from natural language generation. This makes the presentation
layer of Isabelle/Isar appear as very thin.

2. The primary layer of Isar shall absorb our main efforts on reasonable
concepts of human-readable proof texts. The formal proof language given
here is designed to be ready for human consumption and machine-checking
at the same time. Development of primary proofs is facilitated by fine-
grained incremental interpretation of the source text, with meaningful
output of intermediate states. Further user-interface support is provided
by the generic Proof General environment (see also §1.5). Despite inter-
active development, the course of reasoning is expressed statically in the
final text.

3. The primitive layer is treated abstractly in Isar, merely demanding a few
basic principles as an interface for the upper language level (notably com-
position of facts and goals via higher-order resolution). The primary Isar
interpretation process essentially “drives” these primitive inferences, but
never lets the results intrude the text directly. As a consequence, the in-
ternal details of primitive proofs do not really matter, so Isar may both use
Isabelle’s traditional notion of “Correctness by Construction” or primitive
proof terms of the meta-logic.

16 CHAPTER 1. Introduction

This particular division of the problem space of formal proof shall be now illus-
trated by a concrete example.

1.5 Example: the Knaster-Tarski Theorem

We consider a simple formulation of the Knaster-Tarski fixed-point theorem for
complete lattices. The informal statement and proof outline is given below,
following the textbook presentation of [Davey and Priestley, 1990, pages 93–94]
with only minor notational changes.

The Knaster-Tarski Fixpoint Theorem. Let L be a complete
lattice and f : L → L an order-preserving map. Then

d
{x ∈ L |

f (x) ≤ x} is a fixpoint of f.

Proof. Let H = {x ∈ L | f (x) ≤ x} and a =
d

H. For all x ∈ H we
have a ≤ x, so f (a) ≤ f (x) ≤ x. Thus f (a) is a lower bound of H,
whence f (a) ≤ a. We now use this inequality to prove the reverse
one (!) and thereby complete the proof that a is a fixpoint. Since
f is order-preserving, f (f (a)) ≤ f (a). This says f (a) ∈ H, so a ≤
f (a).

This informal exposition shall merely serve as a guideline for our subsequent
formal development in Isar. Despite being rather small, the example already
shows many key elements of Isar proof composition.
As is often done in “realistic” proof formalizations, we specialize the statement
to cover the concrete lattice of power sets only, which happens to be readily
available in our background theory of Isabelle/HOL [Nipkow et al., 2001]. The
main ideas of the proof will still be presented faithfully; see [Wenzel, 2001b] for
a similar proof within an abstract version of lattice theory.

1.5.1 Presentation format: typeset document output

The canonical proof (and theory) presentation format of Isabelle/Isar resembles
traditional mathematical documents, either printed on paper or in a simple
browsable format using PDF. Such documents are meant to be accessible to
readers at large, without requiring any sophisticated tools. Some understanding
of the formal languages encountered here is required, though, both the basic
logic and Isar proof elements.

The subsequent Knaster-Tarski proof is based on very simple facts of set-theory
only, using some lattice properties of general intersection “

⋂
”. Note that “

∧
”

stands for universal quantification; the remaining logical notation is fairly stan-
dard. The concrete syntax of Isar proof elements should at least admit the text
to be read aloud, even without an exact idea about the formal semantics.

1.5. Example: the Knaster-Tarski Theorem 17

theorem Knaster-Tarski : (
∧

x y . x ⊆ y =⇒ f x ⊆ f y) =⇒ ∃ a. f a = a

proof

assume mono:
∧

x y . x ⊆ y =⇒ f x ⊆ f y

let ?H = {u. f u ⊆ u}
let ?a =

⋂
?H

have ge: f ?a ⊆ ?a

proof

fix x assume H : x ∈ ?H

then have ?a ⊆ x ..

also from H have f . . . ⊆ x ..

moreover note mono

finally show f ?a ⊆ x .

qed

also have ?a ⊆ f ?a

proof

from mono and ge have f (f ?a) ⊆ f ?a .

then show f ?a ∈ ?H ..

qed

finally show f ?a = ?a .

qed

The Isabelle document preparation system is able to produce high-quality out-
put from the primary text given by the user (see also §1.5.2). Informal expla-
nations may be included as well, which may refer to arbitrary LATEX markup.
Thus adequate presentations of fully formal theory developments become read-
ily available, leaving behind the unappealing typewriter style that still persists
in many theorem provers. Formal developments do not have to look ugly!

1.5.2 Primary proof: human-readable source

The format of primary proofs is what the Isabelle/Isar system uses directly for
input. Below we exhibit this “real source” of the same Knaster-Tarski proof.

theorem Knaster_Tarski:

"(\<And>x y. x \<subseteq> y \<Longrightarrow> f x \<subseteq> f y)

\<Longrightarrow> \<exists>a. f a = a"

proof

assume mono:

"\<And>x y. x \<subseteq> y \<Longrightarrow> f x \<subseteq> f y"

let ?H = "{u. f u \<subseteq> u}"

let ?a = "\<Inter>?H"

have ge: "f ?a \<subseteq> ?a"

proof

fix x assume H: "x \<in> ?H"

then have "?a \<subseteq> x" ..

also from H have "f \<dots> \<subseteq> x" ..

18 CHAPTER 1. Introduction

moreover note mono

finally show "f ?a \<subseteq> x" .

qed

also have "?a \<subseteq> f ?a"

proof

from mono and ge have "f (f ?a) \<subseteq> f ?a" .

then show "f ?a \<in> ?H" ..

qed

finally show "f ?a = ?a" .

qed

Apparently, the above Isar source is not far removed from the presentation for-
mat given before (§1.5.1). The raw text lacks highlighted keywords, proper
printing of mathematical symbols, and contains additional quotation marks
(which are required in Isabelle to delimit the inner syntax of types and terms
from the primary theory and proof language), but the key structure of Isar
proofs is already present.
Incidently, Isabelle/Isar sources somewhat resemble (stylized) LATEX input. In
fact, Isabelle/Isar and LATEX share the basic idea of producing typeset docu-
ments from decent textual descriptions, with the big difference that LATEX does
not perform any formal checking, of course.

In reality, users need not directly work with raw ASCII texts as shown above, al-
though this is possible in principle. Additional conveniences are provided by the
generic Proof General environment [Aspinall, 2000] [Proof General], which essen-
tially provides an interface for automatic cut-and-paste (including undo opera-
tions) between the source text and the underlying prover process. Proof General
has been built around the XEmacs editing environment, including the X-Symbol
package to take care of mathematical symbols.
Several provers are supported by Proof General, such as Coq, LEGO, PhoX,
Plastic, traditional Isabelle (with the old ML top-level), and Isabelle/Isar (both
for structured proof texts and proof script emulation). A typical Proof General
session for Isabelle/Isar is shown in figure 1.1.
There are two main views: “script” and “proofstate”, which we prefer to call
static proof text and dynamic proof state in Isabelle/Isar. The former presents
the source with some visual enhancements, including an indication of the proof
text processed so far (which is marked as read-only in the editor in order to
ensure consistency with the state of the prover process). The remaining unpro-
cessed text may be manipulated by standard editing means of XEmacs, until
the system is told to step over it by continued formal checking.
The second window provides feedback on the present Isar interpreter config-
uration, probably providing some clues to users on how to proceed, or figure
out problems. Nevertheless, the dynamic state is significantly less important
in structured proof texts than in unstructured scripts. Isar proof development
really means to work on the primary text under construction, with some occa-
sional peeks at the results achieved so far (including facts and goals).

1.5. Example: the Knaster-Tarski Theorem 19

Figure 1.1: Interactive development with Proof General

Strictly speaking, such a user-interface view of the primary Isar source is already
another “presentation” issue, although an even more degenerate one than the
document preparation system covered before (§1.5.1). In fact, only little struc-
ture of Isar proof texts is exploited by Proof General, which has been intended
as a generic front-end for existing interactive provers with unstructured scripts.
For example, there is no support for actual hierarchic editing of proof texts,
which Isar would easily admit due to separate checking of sub-proofs.

Independently of user-interfaces and development tools, the raw ASCII input
of Isar is relevant for long-term integrity of formal proof developments. By
retaining a human-readable format at the primary level, proof texts may be
kept “alive” more easily, even if some of the present system components become
unavailable eventually (Proof General, XEmacs, X-Symbol etc.). For example,
losing X-Symbol could be amended by switching back to plain ASCII (replacing
“\<Longrightarrow>” by “==>” etc.).

20 CHAPTER 1. Introduction

Such casualties do happen in reality, as may be seen from the history of Mizar
[Rudnicki, 1992] [Trybulec, 1993]. Many years ago, Mizar has been tied to
the now obsolete PC font (to exploit special symbols). Further development of
Mizar has ever since been encumbered by the seemingly trivial issue of proper
character encoding.

From a more philosophical perspective, the primary source format of Isar has
the important virtue to confer meaningful formal content, even without the
actual proof processor at hand. In contrast, traditional tactic scripts tend to be
a one-way road only: once that existing (informal) material has been presented
to the system, it has become essentially inaccessible at large, except for the
original proof checker. Further derivative work in a slightly different context
would typically require to go back to the informal literature, provided that can
be still figured out. With inaccessible sources, there is always a pending danger
of losing the results of past formalization efforts!
Certainly, the aspect of adequate archiving of theory sources becomes only rel-
evant after formalized mathematics has been more widely accepted in practice.

1.5.3 Primitive format: internal proof terms

The Isar proof processor inherits any primitive notion of formal proofs directly
from the generic Isabelle/Pure framework. Traditional “secure derivations” of
the Isabelle inference kernel (due to Milner’s “Correctness by Construction”) are
hard to visualize, though, since they only exist as an idea outside of the run-time
environment of the system implementation. Instead we show the forthcoming
alternative proof term format of Isabelle [Berghofer and Nipkow, 2000], which
is based on typed λ-calculus (this requires Isabelle2001 or later).

λ (H :
∧

x y . x ⊆ y =⇒ f x ⊆ f y).
HOL.exI · λx . f x = x ·

⋂
{u. f u ⊆ u} ·

(Ord .order .order-antisym · f (
⋂
{u. f u ⊆ u}) ·

⋂
{u. f u ⊆ u} ·

(subset .Inter-greatest · {u. f u ⊆ u} · f (
⋂
{u. f u ⊆ u}) ·

λ (X :: ′a set).
λ (Ha : X ∈ {u. f u ⊆ u}).

Calculation.order-subst2 ·
⋂
{u. f u ⊆ u} · X · λx . f x · X ·

(subset .Inter-lower · X · {u. f u ⊆ u} · Ha)
· (HOL.iffD1 · X ∈ {x . f x ⊆ x} · f X ⊆ X ·

(Set .mem-Collect-eq · X · λu. f u ⊆ u)
· Ha)

· H)
· (subset .Inter-lower · f (

⋂
{u. f u ⊆ u}) · {u. f u ⊆ u} ·

(HOL.iffD2 · f (
⋂
{u. f u ⊆ u}) ∈ {x . f x ⊆ x} ·

f (f (
⋂
{u. f u ⊆ u})) ⊆ f (

⋂
{u. f u ⊆ u})

· (Set .mem-Collect-eq · f (
⋂
{u. f u ⊆ u}) · λu. f u ⊆ u)

· (H · f (
⋂
{u. f u ⊆ u}) ·

⋂
{u. f u ⊆ u} ·

(subset .Inter-greatest · {u. f u ⊆ u} · f (
⋂
{u. f u ⊆ u}) ·

λ (X :: ′a set).

1.6. Overview of the thesis 21

λ (Ha : X ∈ {u. f u ⊆ u}).
Calculation.order-subst2 ·

⋂
{u. f u ⊆ u} · X · λx . f x

· X
· (subset .Inter-lower · X · {u. f u ⊆ u} · Ha)
· (HOL.iffD1 · X ∈ {x . f x ⊆ x} · f X ⊆ X ·

(Set .mem-Collect-eq · X · λu. f u ⊆ u)
· Ha)

· H)))))

We see that most of the primary proof structure has been lost after reduction
to primitive concepts. For example, the local result of “have ge: f ?a ⊆ ?a”
(internally f (

⋂
{u. f u ⊆ u}) ⊆

⋂
{u. f u ⊆ u}) is used twice in the Isar text,

and appears in two independent copies in the primitive proof due to internal
β-normalization. Another problem is posed by the seemingly trivial issue of
adequate naming of bound variables, due to arbitrary α-conversion inside.
It would indeed be hard to recover a readable Isar text from the primitive
representation, even though Knaster-Tarski is still a very simple example. Note
that we intend to cover much larger applications as well. In fact, this is the
deeper reason why Isar takes high-level texts as a starting point, and produces
low-level proof representations via interpretation from top to bottom.

1.6 Overview of the thesis

1.6.1 Part I: Foundations

The main objective of Isar foundations is to turn existing formal-logic concepts
into a viable language environment for natural deduction proof texts, with-
out requiring extensive theoretical studies first. Isar particularly draws from
known principles of natural deduction reasoning in minimal higher-order logic,
with specific support for higher-order resolution and higher-order unification
(chapter 2). The Isar proof language itself provides a qualitatively different
view, following general concepts of high-level programming languages and leav-
ing behind raw logic. These two levels of discourse are bridged by the Isar/VM
interpreter (chapter 3). The basic structure of natural deduction proof texts is
explored by the example of pure first-order logic (chapter 4).

1.6.2 Part II: Techniques

The generic Isar framework has substantial potential for “advanced” techniques
of formal proof composition, beyond raw natural deduction. We give a sys-
tematic exposition of practically relevant Isar proof patterns, including derived
elements like generalized elimination, cases and induction (chapter 5). The
important paradigm of calculational reasoning (within natural deduction) is ex-
plored as well (chapter 6). All of these techniques have been distilled from
concrete Isabelle/Isar applications, and have already proven viable in practice.

22 CHAPTER 1. Introduction

1.6.3 Part III: Applications

Isabelle/Isar is able to cover a broad range of applications. We include concrete
examples from pure logic (chapter 8), mathematics (chapter 9), and computer-
science (chapter 10). The latter two make use of the Isabelle/HOL application
environment (chapter 7), which gives rise to some further logic-specific Isar proof
techniques. As a general rule, we never “explain” concrete proofs informally,
but let the formal Isar text stand on its own. Nevertheless, specific Isar proof
techniques may well be discussed separately. All formal theory developments are
given complete and unabridged, so the included applications provide evidence for
“realistic” Isabelle/Isar proof documents (as produced with the official version
of Isabelle99-2 from February 2001).

Part I

Foundations

23

Chapter 2

Preliminaries

We briefly review a few foundational issues that are relevant to the Isar frame-
work to be introduced later on. This includes basic mathematical notions, and
an abstract model for generic natural deduction based on minimal higher-order
logic. The latter eventually leads to a viable environment for primitive logical
inferences due to the Isabelle tradition, with the notable inclusion of fundamen-
tal tool support via higher-order unification and back-chaining. Some details of
the existing view have been simplified and generalized for the purposes of Isar.

2.1 Basic mathematical notions

We outline the main aspects of our semi-formal background language for tra-
ditional “pen-and-paper” treatment of mathematical concepts. We basically
employ a standard version of classical set theory, using common mathematical
notation as far as possible, with some bias towards conventions of higher-order
functional programming (according to Haskell or ML) and higher-order logic as
in Isabelle/HOL [Nipkow et al., 2001] (see also chapter 7). Although many of
the formal logical elements to be introduced later on (such as λ-calculus and
higher-order logic) will share substantial parts of the notation introduced here,
these are still different levels of discourse with quite different formal status.

Sets. Some basic sets are taken for granted: truth values bool = {true, false}
and natural numbers nat = {0, 1, 2, . . .}. Common set constructions like
comprehension {x ∈ A. P x}, power sets set of A and finite set of A, Cartesian
products A × B and disjoint sums A | B are available as well. We closely stick
to standard set theory notation for further operations, such as x ∈ A, A ∪ B,
A ∩ B, A − B.

Compound expressions. Common functional programming notation is used
for conditional expressions if b then x else y (where b may be a proposition

25

26 CHAPTER 2. Preliminaries

or boolean value), as well as let x 1 = y1; . . .; xn = yn in e[x 1, . . ., xn] which
abbreviates e[y1, . . ., yn].

Vector notation. Vectors are finite sequences of elements treated as a separate
notational device. We write ~a for the vector of elements a1, . . ., an. A single
element x may be identified with a singleton vector ~x. Vectors may be appended
by juxtaposition: ~x ~y = x 1, . . ., xm, y1, . . ., yn.

Lists. A∗ shall denote the set of finite lists over a given set A. Lists are built
up inductively from the empty list [] (“nil”) and x ◦ xs (“cons”) for x ∈ A and
xs ∈ A∗. We write [x 1, . . ., xn] to denote the list x 1 ◦ · · · ◦ xn ◦ [] (the cons
operator is nested to the right). The append operation is defined as [x 1, . . .,
xm] @ [y1, . . ., yn] = [x 1, . . ., xm, y1, . . ., yn]. The flat function iteratively
appends lists of lists: flat [xs1, . . ., xsn] = xs1 @ . . . @ xsn. The difference of
lists xs − ys means to remove individual occurrences of members of ys from xs
(from left to right), in particular (as @ bs) − as = bs.
The map combinator lifts a function to operate on lists, i.e. map f [x 1, . . .,
xn] = [f x 1, . . ., f xn]. The iterate operator generalizes map by maintaining an
additional result: iterate f (x 0, [a1, . . ., an]) = let (x 1, b1) = f (x 0, a1); . . .;
(xn, bn) = f (xn−1, an) in (xn, [b1, . . ., bn]).
A+ = A∗ − {[]} shall denote the set of non-empty lists over A. Functions first
and last defined on A+ shall select the first and last elements, respectively.

Functions. Let A → B denote the set of total functions from sets A to B, and
A ⇀ B denote the set of partial functions (which share the same notation as
total ones). Following common practice “f ∈ A → B” is written “f : A → B”.
As usual in set theory, functions are identified with their graph; thus we may
also use plain set notation, e.g. {} for the completely undefined function.
We use λ-notation λx ∈ A. f (x) to refer to the function mapping any x ∈ A
to f (x). Function application is simply written as f x, omitting parentheses as
far as possible. Both abstraction and application may be iterated: λ~x. f (~x) =
λx 1. . . . λxn. f (~x) and f ~x = (. . . (f x 1) . . .) xn. An alternative notation for
application is x . f, which may be pronounced as “feed x into f ”; the . operator
is left-associative and binds strongly (but weaker than plain application).
Point-wise update of functions is written in postfix notation, using f (x := y) to
denote the function mapping x to y and any other a to f a. The special notation
f (x := undefined) means to delete an entry, i.e. f − {(x , f x)}. Iterated update
f ++ g of with a collection g of pairs (x , y) is defined in the obvious manner,
for g being either a list (counted from left to right) or a partial function.
Left-to-right sequential composition of functions f and g is written as f ; g,
which is defined as (f ; g) x = g (f x). The dual notation g ◦ f for right-to-left
composition is available as well.

Procedures. Let A and B be sets. A partial function s: nat ⇀ B is called a
sequence iff ∀ i . s i undefined −→ (∀ j . i < j −→ s j undefined), i.e. once that

2.2. Minimal Higher-Order Logic 27

an undefined position is encountered only undefined positions may follow. A
sequence is infinite iff it is a total function nat → B.
Let canonical s = s 0 refer to the head element of a sequence, which is considered
the “canonical” one in the denumeration. Furthermore, let truncate s i = s i for
i = 0 and undefined for i > 0, i.e. truncate restricts a sequence to its canonical
result. Finite sequences coincide with lists; we extend the append operation on
sequences accordingly, such that s1 @ s2 = s1 for s1 being infinite. The flat
operations on lists of lists is transferred to sequences of sequences analogously.
A function p: A → (nat ⇀ B) is called a procedure iff any p x is a sequence
(for x ∈ A). We write A →∗∗ B for the set of procedures from A to B. Note
that procedures need not necessarily be computable functions. Procedures p:
A → (nat ⇀ B) and q : B → (nat ⇀ C) may be composed in a canonical
fashion as follows: any result sequence p x is mapped through q (by function
composition) and the emerging sequence of sequences is flattened; consequently
we define (p; q): A → (nat ⇀ C) as (p; q) x = flat (q ◦ p x). Alternative
choice of procedures p | q means to append the individual result sequences (with
left-to-right preference): (p | q) x = p x @ q x.
A function f : A → B may be turned into a procedure A →∗∗ B by replac-
ing any y = f x (for x ∈ A) by a singleton sequence with canonical result y.
Furthermore, a procedure may be converted back into a (partial) function by
truncating each individual result sequence. In order to avoid excessive detail
later on, we usually treat procedures and (partial) functions uniformly, assuming
that implicit conversions are inserted as required. In particular, this convention
admits to refer to complex operations succinctly in functional expressions (e.g.
higher-order unification which enumerates all possible solutions).

Records. Tuple structures with explicitly labeled fields are expressed in a
concise manner by using record notation. In reminiscence of ordinary tuples
(x1, . . ., xn) ∈ A1 × · · · × An, let (|a1 ∈ A1, . . ., an ∈ An|) denote the set of
records over fields ~a with values from ~A, and write individual record expressions
as (|a1 = x 1, . . ., an = xn|). To accommodate large record specifications we also
use the declaration format record R = a1 :: A1 . . . an :: An.
For any record R with some field a ∈ A the following standard operations are
available: field selection get-a: R → A, field update put-a: A→ R → R, and the
functional map-a: (A → A) → (R → R) for lifting field operations to records,
which is defined as map-a f = λr . put-a (f (get-a r)).

2.2 Minimal Higher-Order Logic

We briefly outline simply-typed minimal higher-order logic, which shall serve
as the very basis for formal-logic issues to be covered later on. The subsequent
presentation draws from similar formulations of the generic framework under-
lying Isabelle/Pure [Paulson, 1989] [Paulson, 1990], with further influences of
type theory presentations like [Barendregt and Geuvers, 2001].

28 CHAPTER 2. Preliminaries

2.2.1 Types and terms

The basic syntactic framework of the logical environment introduced below is
that of simply-typed λ-terms modulo αβη-conversion, following the established
practice of higher-order abstract syntax [Pfenning and Elliott, 1988].

Let name be a globally fixed (infinite) set of names, e.g. the set of strings over
a finite alphabet. Subsequently, we use implicit “copies” of name to achieve
separate naming of various syntactic categories (variables, constants, etc.).

Types τ are inductively defined as first-order “term” structures: τ = ?α | α |
(τ1, . . ., τn)c, with schematic type variables ?α ∈ name, fixed type variables α
∈ name, and type constructors c ∈ name × nat. Type variables may be also
represented by identifiers prefixed by a prime, e.g. writing ′a for α. The second
component of a type constructor is called its arity ; it is usually suppressed as
it is clear from the context, e.g. we write bool instead of (bool , 0). The special
type constructor (⇒, 2) is written as infix and nested to the right, as in the
“curried” type expression τ1 ⇒ τ2 ⇒ . . . ⇒ τn ⇒ σ; the latter may be also
abbreviated as ~τ ⇒ σ. For 0-ary type constructors we write ()c merely as c.
Let type be the set of all well-formed types.

Terms t are simply-typed λ-terms which are built over schematic variables ?x τ
∈ name × type, fixed variables x τ ∈ name × type, and constants cτ ∈ name ×
type as follows: t = ?x τ | x τ | cτ | λx τ . t | t1 t2. The typing relation t : τ is
defined inductively, with aτ : τ for atomic terms (variables and constants) and
the subsequent rules for abstraction and application:

t : σ
(λx τ . t): τ ⇒ σ

t1: τ ⇒ σ t2: τ
(t1 t2): σ

Note that this form of type assignment does not require a separate context of
variable typings, since all atomic terms are already equipped with type anno-
tations beforehand. A term t is called well-typed iff ∃ τ . t : τ . Apparently, each
well-typed term has a unique type. Let term be the set of all well-typed terms.

The usual notions of substitution and instances are taken for granted. Using
postfix notation we write (simultaneous) substitution as τ [τ1/α1, . . ., τn/αn]
for types, and t [t1/x 1, . . ., tn/xn] for terms (which has to respect types). Fur-
thermore, λ-terms shall be considered equal modulo the usual equational theory
of αβη-conversion.

A signature Σ is a collection of declarations of type constructors (with arities)
and constants (with types), such that constant declarations are closed wrt. type
instances and only refer to already declared type constructors. A signature may
be specified by giving schemes of type constructor arities (α1, . . ., αn)c and
constant declarations c :: τ .
A type is called well-formed wrt. a signature Σ iff it is well-formed and only refers
to type constructors of Σ. Likewise, a term is called well-typed wrt. a signature

2.2. Minimal Higher-Order Logic 29

Σ iff it is well-typed and only refers to type constructors and constants of Σ. In
practice, we refer implicitly to the standard signature of the present context.

Finally note that “fixed” versus “schematic” variables as introduced above are
just separate syntactic expressions of the very same formal concept of variables.
The difference is merely one of a policy in certain logical operations to be in-
troduced later on (notably higher-order resolution, see §2.4) [Paulson, 1989]:
schematic variables may get instantiated on the fly, while fixed ones need to be
left unchanged in the present scope.

2.2.2 Propositions and theorems

Well-typed terms of the special type prop are called propositions; the set of
propositions is called prop as well. Statements of minimal higher-order logic
involve separate logical connectives of

∧
(universal quantification) and =⇒ (im-

plication). From now on, we assume that the signature of the current context
contains at least the following declarations:

prop type of propositions∧
:: (α ⇒ prop) ⇒ prop universal quantifier (binder)

=⇒ :: prop ⇒ prop ⇒ prop implication (right-associative infix)

The common binder notation
∧

x1 · · · xn. ϕ refers to nested application of
universal quantifiers and abstractions

∧
(λx1. · · ·

∧
(λxn. ϕ)). “Curried” impli-

cation A1 =⇒ · · · =⇒ An =⇒ C is occasionally abbreviated as ~A =⇒ C.

The set theorem is defined inductively as a certain subset of derivable “sequents”
from (finite set of prop) × prop. We write Γ ` ϕ for (Γ, ϕ) ∈ theorem, and
write ` ϕ for {} ` ϕ. The subsequent inductive definition of Γ ` ϕ depends on
a fixed set of propositions (also called axioms) which is required to be closed
wrt. type instantiation.

(if ϕ is an axiom)
` ϕ (axiom) {ϕ} ` ϕ

(assumption)

Γ ` ψ
Γ − {ϕ} ` ϕ =⇒ ψ

(=⇒-intro)
Γ1 ` ϕ =⇒ ψ Γ2 ` ϕ

Γ1 ∪ Γ2 ` ψ
(=⇒-elim)

Γ ` ϕ (if x not free in Γ)
Γ `

∧
x . ϕ

(
∧

-intro)
Γ `

∧
x . ϕ

Γ ` ϕ[t/x]
(
∧

-elim)

An alternative presentation of these rules is given below, according to common
inference notation for natural deduction (e.g. see the exposition in [Thompson,
1991] or [Basin and Matthews, 2001]). Local contexts involved in the rules are

30 CHAPTER 2. Preliminaries

treated implicit here; the axiom and assumption schemes are suppressed.

[ϕ]....
ψ

ϕ =⇒ ψ
(=⇒-intro)

ϕ =⇒ ψ ϕ

ψ
(=⇒-elim)

[x]....
ϕ∧
x . ϕ

(
∧

-intro)
∧

x . ϕ
ϕ[t/x]

(
∧

-elim)

To achieve succinct presentations later on, logical inference rules are occasionally
treated like functions (taking scheme parameters or premises as arguments), e.g.
assumption ϕ = {ϕ} ` ϕ. Also note that meta-level theorems (especially those
of non-atomic statements involving

∧
/=⇒) are occasionally called “rules” as

well. This liberal terminology makes some sense, because theorems give rise to
canonical inference rules via higher-order back-chaining (see also §2.4).

A theory Θ consists of a signature Σ (cf. §2.2.1) plus a set of axioms (closed
wrt. type instantiation). A theory may be specified by giving declarations for
the signature part and stating axioms ` ϕ. We usually refer implicitly to the
standard theory (and signature) of the present context.
As a general convention (following [Paulson and Nipkow, 1994]), free variables
occurring in theorems presented at the top-level theory context shall be con-
sidered as implicitly generalized. This may be expressed by replacing fixed
variables x (for terms) and α (for types) by schematic ones ?x and ?α. Outer-
most quantification “

∧
x” achieves an equivalent effect, but does not work for

type variables. So ` A =⇒ A may be read as ` ?A =⇒ ?A or `
∧

A. A =⇒ A.

The inference system given above supports schematic polymorphism, in the sense
that arbitrary type instances of theorems are guaranteed to be derivable as well
(which requires well-typedness of terms and propositions to be preserved in the
first-place). The deeper reason for this is that both the declarations of constant
schemes and axioms are closed by type instantiation. The following (admissible)
rule captures schematic polymorphism succinctly; it is quite easy to establish
by induction over derivations.

Γ ` ϕ (if α not in Γ)
Γ ` ϕ[τ/α] or:

[α]....
ϕ

ϕ[τ/α]

Minimal higher-order logic considered so far is sufficiently expressive to represent
further standard logical connectives (∃ , ∧, ∨, ¬ etc.) directly within the existing

2.3. Definitional theory extensions 31

system. For example, ∃ x . P x may be represented according to its canonical
elimination form as

∧
C . (

∧
x . P x =⇒ C) =⇒ C (see also chapter 8).

Immediate extensions like this are not the primary intention of the pure logi-
cal framework, though. An actual working environment like Isabelle/HOL (see
chapter 7) is embedded as an object-logic instead. This involves separate ax-
iomatization of a “derivability judgment” that coerces object-level statements to
meta-level propositions. Isabelle [Paulson and Nipkow, 1994] traditionally uses
the functional constant Trueprop, which is suppressed in the concrete syntax.
So “` ϕ” may actually refer to ` Trueprop ϕ, if ϕ is an object-level formula.
Nevertheless, it is good to know that the pure framework is able to represent
standard logical connectives directly. The Isar framework introduced later on
(see chapter 3) essentially provides a reflection of minimal-logic concepts to the
level of structured proof texts. The previous observation on connectives may
serve as a guideline for advanced reasoning patterns (e.g. see chapter 5), like the
“existential” proof context element that is based on the general idea underlying∧

C . (
∧

x . P x =⇒ C) =⇒ C (see §5.3).

Theorems routinely occur in finite collections, so we define fact = theorem∗ as
the set of lists of theorems, which shall be used wherever results of derivations
arise in the present context. Technically, this serves as a (partial) replacement
for multiple result sequents, as available in the slightly more complex setting of
DECLARE [Syme, 1997a] [Syme, 1998] [Syme, 1999]. The immediate view of
conjunction as

∧
C . (A =⇒ B =⇒ C) =⇒ C is occasionally helpful as well.

2.3 Definitional theory extensions

Theories may be extended by abstract syntax declarations (§2.2.1) and axioms
(§2.2.2). Given a theory Θ, we may specify an extension Θ ′ as follows: Θ ′ = Θ
∪ (~α)c ∪ c :: τ ∪ ` ϕ, which is meant to introduce new type constructors, term
constants, or axioms. Note that the actual end-user environment will provide
a higher-level view on theory specifications, with concrete syntax for primitives
(see chapter 3) as well as derived extension mechanisms (see chapter 7). In
reality, only those theory extension schemes are considered “appropriate” that
qualify as definitional ones for meta-theoretical reasons.
As a prerequisite for definitional equations expressed within the framework itself,
we introduce a notion of (extensional) equality by axiomatic means. From now
on, all theories shall contain the following constant and axiom declarations.

≡ :: α ⇒ α ⇒ prop equality relation (infix)
` x ≡ x reflexivity law
` x ≡ y =⇒ P x =⇒ P y substitution law
` (
∧

x . f x ≡ g x) =⇒ f ≡ g extensionality
` (A =⇒ B) =⇒ (B =⇒ A) =⇒ A ≡ B coincidence with equivalence

32 CHAPTER 2. Preliminaries

Various notions of definitional extensions may now be identified as restricted
axiomatizations over “≡”.

2.3.1 Simple definitions

The most basic discipline of constant definitions essentially just introduces ab-
breviations for concrete expressions within the logic; see also [Pitts, 1993] for
the HOL point of view. Let c :: τ refer to a “new” constant declaration wrt.
the current theory context Θ. Furthermore, let cτ ≡ t be a well-typed equation
such that t neither contains the constant c nor any term variables, and the type
variables of t are already covered by its type τ (i.e. t must not contain any
“hidden” type dependencies). Then the extension Θ ′ = Θ ∪ c :: τ ∪ ` cτ ≡ t
qualifies as a simple definition.

This strict form of definition enjoys a number of common meta-theoretical prop-
erties, e.g. preservation of completeness, decidability, consistency, and standard
models (according to [Pitts, 1993]). The key property of simple definitions is
that ` ϕ in Θ ′ iff ` ϕ[t/c] in Θ (where ϕ[t/c] has all type instances of cτ ex-
panded by the corresponding type instance of t). A basic consequence is the
important property of syntactic conservativity, in the sense that any theorem
of the new context that is formulated in the old syntax already holds in the
old context. The old syntax does not mention the constant c so conservativity
follows trivially from the previous expansion property.
Simple definitions may be presented slightly more liberally without changing
their meta-theory. In particular, the important special case of function defini-
tions may be written succinctly as ` c ~x ≡ t instead of the raw ` c ≡ λ~x. t
(recall that “≡” is extensional).

2.3.2 Weakened definitions

Let Θ ′ = Θ ∪ c :: τ ∪ ` cτ ≡ t be a simple definitional extension. Any other
extension Θ ′′ = Θ ∪ c :: τ ∪ ` ~ϕ, for ` ~ϕ being derivable in Θ ′, is called
weakened definition. The most common instance of this scheme are conditional
definitions of the form Θ ∪ c :: τ ∪ ` ~χ =⇒ cτ ≡ t for arbitrary conditions ~χ.
Another useful instance are loose specifications Θ ∪ c :: τ ∪ ` P cτ , provided
that ` P t is derivable in the original context.

It is easy to see that weakened definitions still enjoy the basic properties of
syntactic conservativity, and preservation of consistency and standard models
as before (all consequences of Θ ′′ are already covered by Θ ′). On the other
hand, the exact correspondence of ` ϕ versus the expansion ` ϕ[t/c] has been
lost, only the left-to-right implication holds in general. Weakened definitions
turn out as a fairly liberal specification mechanism that merely happens to be
“topped” by exact definitions outside of the formal context.

2.4. Higher-order resolution 33

The two most extreme cases of weakened definitions are unspecified constant
declarations of the form Θ ∪ c :: τ (like arbitrary :: α in Isabelle/HOL, see
chapter 7 and chapter 8), and initial axiomatizations of full object-logics (all
object-rules are derivable from a hypothetical definition ` Trueprop A ≡ >).

2.3.3 Overloaded definitions

The scheme of overloaded constant definitions [Wenzel, 1997] renounces the
requirement to have declarations c :: τ and definitions cτ ≡ t agree on the type
scheme τ , instead several (non-overlapping) type instances of c may be specified,
e.g. Θ ∪ c :: α ∪ ` cnat ≡ 0 ∪ ` cbool ≡ False ∪ ` cα×β ≡ (cα, cβ). See [Wenzel,
1997] for further details on well-formedness conditions of overloaded definitions;
the end-user view is covered in §7.1.2.
This rather liberal definition scheme offers interesting ways to specify generic
operations, depending on the structure of (simple) types. It even covers “object-
oriented” concepts like “method overriding” and “late-binding” [Naraschewski
and Wenzel, 1998]. A slightly more conventional view on overloading is ex-
ploited by the concept of “axiomatic type classes”, which offers a light-weight
mechanism for abstract theories (see also §7.2.4).

Overloading does not lose any further meta-theoretical properties beyond those
given up by weakened definitions already. Note that the tradition of relatively
weak meta-theoretical properties goes back to the Gordon/HOL system [Gordon
and Melham, 1993] [Pitts, 1993], which covers loose specifications (but no over-
loading). Isabelle/HOL [Nipkow et al., 2001] (see also chapter 7) routinely uses
overloading in its main library. Designers of different object-logics may choose
to ignore such exotic features, but restrict themselves to simple definitions.

2.4 Higher-order resolution

The main purpose of minimal higher-order logic (§2.2) as a logical framework
[Paulson, 1989] [Paulson, 1990] is to represent nested natural deduction rules
as formulas over

∧
/=⇒. According to Paulson, the idea of extending original

(first-order) natural deduction [Gentzen, 1935] to arbitrary nesting goes back to
[Schroeder-Heister, 1984]. In the Isabelle framework, the presentation becomes
slightly more elegant, though, since low-level syntactic notions like Skolem con-
stants and textual inferences are recast via handsome

∧
/=⇒ connectives.

As a consequence of this particular view on minimal logic, the primitive intro-
ductions and eliminations (§2.2.2) lose some significance in practice, but get
replaced by the derived concepts of higher-order resolution (for composing rules
in a natural manner) and proof by assumption (for finishing a situation).

We will write r · ~a for the resulting theorem of resolving fact ~a in parallel into
a rule r. Resolution may indeed be read like a generalized application of λ-

34 CHAPTER 2. Preliminaries

calculus, but it covers implicit lifting over local contexts of
∧
/=⇒, as well as

higher-order unification (see §2.4.2).

2.4.1 Hereditary Harrop Formulas

The language of
∧

/=⇒ formulas admits to represent different classes of “rules”,
depending on the intended kind of inference framework, see also the literature
on λ-Prolog for further details [Miller, 1991].
In particular, the set of Horn Clauses merely consists of curried implications
of atomic formulas, with a flat prefix of outer parameters. This set may be
specified succinctly as

∧
x∗. A∗ =⇒ A, where x shall represent variables and

A atomic propositions (not containing
∧

or =⇒). Since outermost parameters
are usually expressed by free variables (both in Prolog and Isabelle tradition),
the presentation may be simplified to A∗ =⇒ A. This nicely corresponds to the
common two-dimensional format of inference rules:

A1 . . . An

A

Propositions in Hereditary Harrop Format (HHF) [Miller, 1991] generalize such
rules by admitting arbitrary nested statements as assumptions (conclusions are
still atomic); we define the set H of HHF formulas inductively as follows: H
=
∧

x∗. H ∗ =⇒ A. Outermost parameters are usually suppressed as before;
generalize presents the generality of a rule in terms of schematic variables.∧

~x. ~H ~x =⇒ A ~x

~H ?~x =⇒ A ?~x
(generalize)

HHF admits general proof schemes to be represented succinctly. For example,
mathematical induction may be stated directly at the meta-level as ` P 0 =⇒
(
∧

n. P n =⇒ P (Suc n)) =⇒ P n, instead of a typical object-level encoding like
` P 0 =⇒ (∀n. P n −→ P (Suc n)) =⇒ P n, which is slightly awkward since
∀ /−→ need to be treated by explicit rule applications later. Any proposition of
minimal higher-order logic may be presented in HHF normal form, because the
law ` (P =⇒ (

∧
x . Q x)) ≡ (

∧
x . P =⇒ Q x) allows

∧
and =⇒ to be commuted

such that parameters occur as a flat prefix at each level of rule nesting.

In Isabelle [Paulson and Nipkow, 1994] a goal is represented as a theorem,
which is ` ϕ =⇒ ϕ in the beginning and gets transformed to become ` ϕ
eventually. A tactic is any procedure theorem →∗∗ theorem that does not affect
the main conclusion ϕ, nor the implicit assumption context. Intermediate goal
configurations are of the form ` ~χ =⇒ ϕ, where the subgoals ~χ that are again
HHF formula

∧
~x. ~H ~x =⇒ A ~x. Here the parameters ~x need to be treated as

“arbitrary, but fixed”, while the premises ~H ~x may be assumed as local facts
during the sub-proof of the pending obligation A ~x.

2.4. Higher-order resolution 35

This goal representation works out smoothly, as long as the main conclusion
is atomic. Isabelle provides special provisions to derive non-atomic rule state-
ments, which is treated as an “advanced method” in the Isabelle documentation
[Paulson, 2001a] (here the system essentially decomposes the initial statement
into an outer context and an atomic conclusion; the rule emerges implicitly by
discharging the context again after finishing the proof).
The deeper reason for this inconvenience is the “improper list” representation
of the outer goal structure according to HHF, which would misinterpret a non-
atomic conclusion “. . . =⇒ H ” as if the premises of H would be separate sub-
goals. In order to admit the rightmost position to hold arbitrary HHF formulas
as well, we need to preserve the initial structure somehow. For our purposes
of Isar proof composition (see chapter 3) we introduce additional proposition
markers “#” (without any logical meaning) that formally turn a general “H ”
expression into an “A” one. Marked HHF formulas are of the form G∗ =⇒ G,
where G = H | #H. Only the topmost implication structure may carry markers;
the outer parameter prefix is again omitted. The following derived rules admit
to initialize and conclude a goal configuration (see also §3.2.3).

ϕ =⇒ #ϕ
(init) #ϕ

ϕ (conclude)

Here we only require a marker for the main conclusion. Optional markers en-
countered in rule premises shall play a second role to achieve proper treatment
of general HHF assumptions in local goal refinements (see refine in §2.4.2).

2.4.2 Fundamental inference rules

Higher-order resolution composes rules via “back-chaining”, while taking care of
local

∧
/=⇒ contexts and instantiations automatically. Raw composition turns

` ~A =⇒ B and ` B =⇒ C into ` ~A =⇒ C, essentially performing modus ponens
(in reverse order), while passing through an implication prefix ~A. The compose
rule given below also covers implicit instantiation of the conclusion of the first
rule and the premise of the second one.

~A =⇒ B B ′ =⇒ C B θ = B ′θ
~A θ =⇒ C θ

(compose)

Here θ shall refer to a substitution that exclusively operates on schematic vari-
ables (of types and terms, see also §2.2.1). A real implementation would typ-
ically enumerate possible solutions for θ by higher-order unification [Paulson,
1989] [Paulson, 1990], but the exact operational details do not matter here.

Actual resolution is similar to compose, but observes the HHF structure of the
premise of the second rule. Instead of B ′ above the general structure may now
be
∧
~x. ~H ~x =⇒ B ′ ~x. In order admit back-chaining as indicated before, the

36 CHAPTER 2. Preliminaries

first rule needs to be adapted accordingly, which is called “lifting” in Isabelle
jargon [Paulson and Nipkow, 1994]. Lifting over a context

∧
~x. ~H ~x =⇒ . . . may

be performed by the following (derived) rules. The
∧

-lift rule is particularly
subtle, since all schematic variables ?~a of the original rule need to be adapted
to depend on the new outer parameters.

~A ?~a =⇒ B ?~a
(
∧
~x. ~A (?~a ~x)) =⇒ (

∧
~x. B (?~a ~x))

(
∧

-lift)

~A =⇒ B
(~H =⇒ ~A) =⇒ (~H =⇒ B)

(=⇒-lift)

The resolve scheme is now acquired from
∧

-lift, =⇒-lift, and compose.

~A ?~a =⇒ B ?~a
(
∧
~x. ~H ~x =⇒ B ′ ~x) =⇒ C

(λ~x. B (?~a ~x)) θ = B ′θ

(
∧
~x. ~H ~x =⇒ ~A (?~a ~x)) θ =⇒ C θ

(resolve)

We usually prefer to write resolve a r in applicative order as r · a, which may be
pronounced as “r of a” (see the related operation “OF” introduced in §3.3.2).
Resolution may be easily generalized to several argument rules ~a applied in
parallel to a single rule r, covering a certain prefix of premises of r.

Proof-by-assumption solves a subgoal by projecting a local premise (after in-
stantiation). Note that this may only take atomic assumptions into account,
since the conclusion is atomic as well.

(
∧
~x. ~H ~x =⇒ A ~x) =⇒ C A θ = H i θ (for some i)

C θ
(by-assumption)

Isar goal refinements essentially work just by plain resolution; the subsequent
version allows arbitrary HHF assumptions to be solved at the same time. Below
the first argument ~G ?~a =⇒ B ?~a represents a local conclusion that has just
been exported from a context of additional assumptions; any (optional) markers
in the premises indicate immediate proof-by-assumption. The second argument
(
∧
~x. ~H ~x =⇒ B ′ ~x) =⇒ C represents an enclosing goal state with first subgoal∧
~x. ~H ~x =⇒ B ′ ~x; further subgoals and the conclusion are subsumed by C.

~G ?~a =⇒ B ?~a
(
∧
~x. ~H ~x =⇒ B ′ ~x) =⇒ C

(λ~x. B (?~a ~x)) θ = B ′θ
(λ~x. Gj (?~a ~x)) θ = #H i θ (for all marked Gj for some i)

(
∧
~x. ~H ~x =⇒ ~G ′ (?~a ~x)) θ =⇒ C θ

(refine)

2.5. The Isabelle/Pure framework 37

Recall that ~G may consist of marked and unmarked HHF formulas (§2.4.1).
The marked ones are immediately solved against existing premises H i, while
the result ~G ′ merely covers the remaining non-marked premises of ~G (which
become new subgoals in the result).
The refine operation will be hidden in the very core of the Isar proof processor
(see also §3.2.3); it enables arbitrarily structured assumptions and conclusions
in proof texts. Note that direct goal transformations by users (e.g. via existing
tactics) never encounter the subtleties of marked versus unmarked propositions,
but work with plain resolve or by-assumption steps (see also §3.3.2).

2.5 The Isabelle/Pure framework

The logical framework introduced so far may be understood as a reformed pre-
sentation of the existing Isabelle/Pure environment [Paulson, 1989] [Paulson,
1990] [Paulson and Nipkow, 1994], which will serve as the formal background
for the Isar concepts introduced later on (see chapter 3). The actual Isabelle/Isar
implementation [Wenzel, 2001a] has been built around the Isabelle/Pure sys-
tem, too. Subsequently, we briefly review the main differences of our framework
of minimal higher-order logic (§2.2) to traditional Isabelle/Pure.
The original view of higher-order logic in Isabelle/Pure [Paulson, 1989] [Paulson,
1990] is somewhat closer to older formulations [Church, 1940] [Andrews, 1986]
[Gordon and Melham, 1993] [Pitts, 1993], while omitting any classical principles
and choice operators, of course (see also chapter 8). The following rules have
been stated by Paulson, and implemented as primitive theorem constructors in
Isabelle [Paulson and Nipkow, 1994].

[ϕ]....
ψ

ϕ =⇒ ψ

ϕ =⇒ ψ ϕ

ψ

[x]....
ϕ∧
x . ϕ

∧
x . ϕ

ϕ[t/x]

t ≡ t
t ≡ u u ≡ v

t ≡ v
t ≡ u
u ≡ t

f ≡ g t ≡ u
f t ≡ g u

[x]....
t ≡ u

λx . t ≡ λx . u (λx . t) u ≡ t [u/x]

[x]....
f x ≡ g x

f ≡ g

[ϕ]....
ψ

[ψ]....
ϕ

ϕ ≡ ψ

ϕ ≡ ψ ϕ

ψ

38 CHAPTER 2. Preliminaries

Here introduction and elimination of
∧

/=⇒ is the same as before (§2.2).
Definitional equality is characterized by low-level rules as an equivalence, with
congruence properties wrt. λ-term formation, β-conversion, and extensionality;
the correspondence to logical equivalence is expressed via explicit rules as well.
In contrast, our presentation of extensional equality in §2.3 merely adds a few
basic axioms to the existing framework. No rules are added, although these may
be easily derived (e.g. see chapter 8). Our more compact treatment consider-
ably simplifies meta-level studies of definitional extensions (§2.3), although the
details have not been shown here.
Moreover, type instantiation is included as another primitive in Isabelle/Pure
[Paulson and Nipkow, 1994]. In contrast, we have been able to acquire the same
rule as an admissible one (§2.2.2), essentially due to the initial closure of axioms
by type instantiations. Thus we have kept schematic polymorphism out of the
core inference system (§2.2.2). Treating type instantiation as a primitive rule
causes many technical subtleties of the resulting structure of derivations, much
unnecessary effort has been required for the original meta-theory of overloaded
definitions [Wenzel, 1994] [Wenzel, 1997].
Note that the additional concept of order-sorted type classes of Isabelle/Pure
[Nipkow, 1993] [Nipkow and Prehofer, 1993] has been treated as an admissible
extension of the basic inference system before [Wenzel, 1997]; see also §7.2.4 for
the end-user view of type classes and overloading.

Generally speaking, our presentation of the “pure” framework has been made
more conforming to common presentations of natural deduction proof systems
according to typed λ-calculus. In fact, our formulation resembles the presen-
tation of “λHOL” within Pure Type Systems [Barendregt and Geuvers, 2001].
λHOL consists of three layers of typed λ-calculus, with separate abstractions,
applications, and (potentially dependent) arrow types. In our notation (§2.2)
the arrows for the three layers are written as⇒/

∧
/=⇒, corresponding to syntac-

tic function types, universal quantification, and implication, respectively. Only∧
may actually depend on its abstraction argument (this is an inherent property

of λHOL [Barendregt and Geuvers, 2001]). The corresponding introduction and
elimination rules of ⇒/

∧
/=⇒ are essentially those of simple type assignment

(§2.2.1), modified to operate with local typing contexts, and the basic logical
inferences of higher-order natural deduction (§2.2.2).

[x : τ]....
t : σ

(λx : τ . t): τ ⇒ σ
(⇒-intro)

t1: τ ⇒ σ t2: τ
(t1 t2): σ

(⇒-elim)

[x : τ]....
p: ϕ

(λx : τ . p): (
∧

x : τ . ϕ)
(
∧

-intro)
p: (

∧
x : τ . ϕ) t : τ

(p t): ϕ[t/x]
(
∧

-elim)

2.5. The Isabelle/Pure framework 39

[h: ϕ]....
p: ψ

(λh: ϕ. p): ϕ =⇒ ψ
(=⇒-intro)

p1: ϕ =⇒ ψ p2: ϕ
(p1 p2): ψ

(=⇒-elim)

This unified view on minimal higher-order logic is able to improve the gen-
eral theoretical understanding of the framework considerably. It has certainly
influenced our simplified presentation given before (§2.2). Note that recent im-
provements of the Isabelle inference kernel [Berghofer and Nipkow, 2000] follow
a similar perception of multi-level λ-calculus, too.
Nevertheless, the user-experience of the “real” Isabelle/Pure system differs from
λHOL in a few important details. First of all, the level of mere syntactic types
(“⇒”) is left implicit most of the time, with additional conveniences like au-
tomatic type inference and polymorphism (see also §3.4.3). Moreover, the two
logical levels (“

∧
” and “=⇒”) do not expose primitive proof terms to the user,

but only propositions. Essentially, a derivation object “` ϕ” may be read as
a “theorem” or “abstracted primitive proof” interchangeably. Primitive proofs
never occur in actual primary proof texts of the Isar layer (cf. §1.4).

40 CHAPTER 2. Preliminaries

Chapter 3

The Isar proof language

We give a detailed exposition of the Isar proof language, covering syntax and
operational semantics according to the Isar/VM interpretation scheme. Only
the most basic elements of high-level natural deduction proof texts are hardwired
as Isar primitives, further concepts are generally introduced as derived ones on
top of the core system. The proof language is embedded into a generic notion
of theory specifications.

Isar proof processing essentially imposes a certain policy on a selection of prim-
itive logical operations. In particular, Isar does not introduce yet another log-
ical calculus, but provides a conceptually different view on existing concepts
of generic natural deduction, focusing on incremental language interpretation
rather than primitive inference systems.

3.1 Introduction

The Isar language provides a general framework for human-readable natural
deduction proofs, see also [Wenzel, 1999] for an earlier version. The Isabelle/Isar
implementation [Wenzel, 2001a] enhances the Isabelle/Pure logical framework
[Paulson and Nipkow, 1994] to cover actual proof texts as well. While Isar
is generally somewhat biased towards that particular infrastructure of higher-
order nested natural deduction, most of the basic ideas could be transferred to
other foundations of mechanized logic as well.
An important philosophical issue of the Isar approach is the primacy of a high-
level formal language, with an operational semantics provided by incremental
interpretation. In particular, we do not invent a new logical calculus and estab-
lish a number of standard meta-theoretical results. Taking the very foundations
of logic for granted, we build a conceptually different layer on top. As already
pointed out by our terminology, the techniques to be developed here are more

41

42 CHAPTER 3. The Isar proof language

appropriately related to the field of high-level programming languages, rather
than mathematical logic.

Roughly speaking, the Isar language may be divided into two separate parts,
for theory and proof descriptions. The latter includes both “proper” language
elements for declarative proof texts, and “improper” ones for experimentation
and emulation of unstructured proof scripts.
The key to viable support for human-readable formal proof texts is the design
of the proper part of the Isar proof language, which consists of 12 basic ele-
ments (see also §3.2.1): “fix x :: τ” and “assm �r� a: A” augment the logical
context, then indicates forward chaining of previous facts, “have a: A” and
“show a: A” claim local statements (the latter includes solving of some pend-
ing goal afterwards), “proof m” performs an initial proof step by applying some
method, “qed m” concludes a (sub-)proof, “{”, “}” and next manage block
structure, “let p = t” introduces term abbreviations via higher-order matching,
and “note a = ~b” names reconsidered facts.
Common context elements are represented as particular instances of the generic
assm primitive, notably assume for the usual kind of “strong” assumptions and
def for local definitions (see also §3.3.1). Furthermore, there are a number of de-
rived proof commands (see §3.3.3), most notably “by m1 m2” for proofs with an
empty body, “..” for single-rule proofs, “.” for immediate proofs, hence/thus
for claims with forward chaining indicated, and “from ~a”/“with ~a” for explicit
forward chaining from (additional) facts.
A few standard abbreviations are available as well: ?thesis for the original
claim at the head of the current proof, ?this for the latest finished statement,
and “. . .” for its left-hand side (if available). The special name this refers to
any fact established in the previous step (then happens to be the same as
“from this”). Fundamental proof methods are “this” to resolve facts directly,
“(rule r)” to apply a rule resolved with facts, and “−” to insert previous facts
without applying any rule yet (see also §3.3.2).

The natural deduction kernel of Isar directly corresponds to the underlying
logical framework (cf. §2.2). For example, a meta-level rule statement may be
established as follows.

have
∧

x y z . A =⇒ B =⇒ C

proof −
fix x y z

assume A B

show C 〈proof 〉
qed

Here the basic idea is to build up an Isar proof text corresponding directly to the
logical connectives, using fix for

∧
and assume/show for =⇒. In practice such

proof problems usually emerge from a different claim being refined by an initial
proof method, which is used instead of “−” encountered here. See chapter 4 for
further basic examples on natural deduction in Isar.

3.2. Syntax and semantics 43

Despite being primarily focused on plain natural deduction proof descriptions,
the Isar framework turns out as sufficiently flexible to support a rich environment
of linguistic expressions that both readers and writers may find satisfactory as
a primary representation of formal documents. See chapter 5 and chapter 6 for
a systematic exploration of the resulting space of useful proof patterns.

3.2 Syntax and semantics

The syntax of the Isar theory and proof specification language is defined via a
set of primary commands, as defined by the syntactic category command below
(§3.2.1). From the syntactic viewpoint, any sequence of commands is already a
well-formed Isar document. The semantics of each command is determined by a
transition of the underlying configuration, which may be either the background
library of theories, an individual theory, or a proof state (which is again subdi-
vided into three different modes). From the basic typing of commands induced
by the transition semantics we impose a certain structure of Isar documents,
which achieves a block structured formal language that may be presented in the
usual form via a context free grammar retrospectively (see §3.2.4).

By having the Isar language emerge in this bottom-up manner we emphasize
its incremental interpretation, such that the process of formal proof checking
coincides with that of interactive development and debugging (commands turn
out as sufficiently fine-grained to support this in reality).
Moreover we may easily extend the basic language by derived commands, which
are defined as abbreviations of existing ones (potentially depending on the cur-
rent state). Derived elements may be freely combined with the rest of the
language, according to the typing determined by the semantics of the underly-
ing primitives. Thus we achieve a maximal degree of language compositionality
for free, without having to maintain a fixed global grammar.
Consequently, the Isar primitives may be restricted to the bare minimum re-
quired to bootstrap the language environment. A number of standard derived
elements introduced later on (see §3.3.3) are indispensable even for the most ba-
sic applications. Further canonical slots for extensions are that of proof methods
(goal refinement schemes) and attributes (operations involving facts); the most
basic ones are included in the general Isar setup (see §3.3.2).

In the subsequent definitions of syntactic categories related to the basic Isar
language, we are using the following notation for regular expressions, namely
parentheses “(. . .)” for grouping, x∗ for zero or more occurrences of a language
element x, likewise x+ for one or more, and x ? for zero or one occurrences of x.
Furthermore, recall the following basic formal items introduced in §2.1 and §2.2:
nat for natural numbers, bool for truth values, name for basic names, type for
well-formed (simple) types, term for well-typed λ-terms, prop for propositions
(terms of type prop), and theorem for derivable propositions.

44 CHAPTER 3. The Isar proof language

3.2.1 Isar commands

The Isar proof language consists of three main layers, with these sub-languages:

command primary proof commands
method operations on goals
attribute operations involving facts

Presently our main focus is on the primary command language. The secondary
ones of method and attribute may be considered as a parameter of the whole
Isar framework. Later on we will merely specify a few fundamental methods
and attributes (see §3.3.2), while leaving it to concrete working environments
to incorporate any further tools as appropriate (like the collection of automated
proof methods of Isabelle/HOL, see §7.3).

The primary language command defines a number of primitives (both for theory
and proof operations) as follows.

command =
theory name = name (+ name)∗:

| end

| types (name nat)+

| consts (name :: type)+

| axioms (name-atts: prop)+

| theorems (name-atts =)? name-atts+

| theorem (name-atts:)? prop

| apply method
| done

| proof method?

| qed method?

| {
| }
| next
| let term = term (and term = term)∗

| note (name-atts =)? name-atts+ (and (name-atts =)? name-atts+)∗

| fix var+

| assm �rule� (name-atts:)? prop+ (and (name-atts:)? prop+)∗

| then
| have (name-atts:)? prop
| show (name-atts:)? prop

Some additional basic categories are defined below.

var = name × type
case = var∗ × prop∗

fact = theorem∗

rule = theorem → theorem
name-atts = name [attribute∗]?

3.2. Syntax and semantics 45

In order to simplify the subsequent treatment of commands, we fix the default
values for any optional arguments as follows.

proof default method rule (see §3.3.2)
qed default method succeed (see §3.3.2)
name-atts default name this with empty list of attributes

Also note that the rule argument of assm is treated in a special way, such that
Isar proof texts given by users may not refer to it directly (there is no concrete
syntax for rule available). Thus assm may only occur indirectly via derived
commands, such as the basic context elements assume, presume, def , and
case introduced in §3.3.1.

3.2.2 Basic types of commands

A formal Isar text is syntactically correct iff it conforms to the (degenerate)
grammar command+. Certainly, this does not yet impose any specific struc-
ture on formal texts, which will be only determined as part of the operational
semantics of commands, involving fine-grained typings.
Assume the types library (for the background storage of theories), theory (for
theory contexts), and proof (for proof configurations). Isar commands are given
the following types expressed in the signature diagram of figure 3.1.

theory

end

library

done

theorem

types consts
axioms theorems

apply done
proof qed
{ } next
let note
fix assm
have show

theory proof

qed

Figure 3.1: Basic types of Isar commands

Corresponding to these basic typings, we also introduce the following classifica-
tion of Isar commands.

theory setup commands theory, end
theory specifications types, consts, axioms, theorems,

theorem
improper proof commands apply, done
proper proof commands proof , qed, {, }, next, let, note,

fix, assm, then, have, show

46 CHAPTER 3. The Isar proof language

Naturally, proof commands and proof configurations are the main focus of Isar,
see §3.2.3 for further details.
Presently we shall point out a few aspects of how the Isar concept of proof may
be embedded into theory specifications, including integration with an enclosing
library of theories. The underlying concepts of theory and library happen to be
closely related to those of recent versions of Isabelle [Paulson, 2001b] [Berghofer
and Wenzel, 2001]. Nevertheless, this particular model mainly serves as a work-
ing example, obviously the Isar proof language could be also embedded into
rather different theory concepts as well.

A theory consists of purely logical declarations (according to §2.2), together
with an explicit environment of facts, and an additional slot to keep any kind
of auxiliary information data.

record theory =
types :: set of (name × nat)
consts :: set of (name × type)
axioms :: name ⇀ prop
theorems :: name ⇀ fact
data :: data

The data slot is left unspecified for our present purpose. While it is kept along
with the theory, it does not affect its meaning from the purely logical point
of view. Nevertheless, the concept of extra-logical theory data proves an in-
dispensable tool to support advanced theorem proving environments (e.g. for
separate contexts of rules to be used with automated proof procedures, as well
as high-level theory specifications; see also chapter 7).
Commands types, consts, axioms shall maintain the corresponding primitive
theory fields in the obvious manner; theorems provides a direct interface to
update the theorem environment; theorem is conceptually quite different from
the previous ones as it first enters a proof configuration, eventually resulting in
an actual theorem, and then updates theorems accordingly. The theorem names
“-” and nothing shall be considered as reserved, with the standard assignments
of `

∧
A. A =⇒ A and the empty fact, respectively.

A library shall represent any kind of background storage of individual theory
objects, usually with some inherent notion of (acyclic) dependencies.

record library =
theories :: name ⇀ theory
deps :: name ⇀ set of name

Viable theory management for large-scale applications is still an issue of ongoing
research, both from the logical perspective (e.g. [Pollack, 2000]) and the change
management view (e.g. [Reif, 1992] [Hutter, 2000]). Concerning Isar we only
demand the primitive “theory a = b1 + . . . + bn:” for commencing a new
theory context from the merge of existing ones, and end to put the result
back into the library. Independently of any automatic mechanisms of update,

3.2. Syntax and semantics 47

change management, synchronization with external repositories etc., the core
Isar commands operate on theory and proof configurations in a linear fashion.
We deliberately rule out unstructured interaction with the theory arrangement
once that a particular context has been entered. For example, there is no
command for ad-hoc import of existing theories into the present context. The
idea is to provide commands to compose a collection of well-defined theory
documents, rather than ad-hoc manipulations of formal entities.

3.2.3 Isar/VM transitions

We are ready to define the operational semantics of the actual Isar proof com-
mands, by interpretation as transitions of the Isar virtual machine (Isar/VM).
According to definitions to be given later on, Isar/VM configurations have type
proof, mainly consisting of a static proof context plus dynamic goal information.
C shall fix the semantics of proof commands (together with initial and terminal
linking with the theory context), while interpretations M for proof methods
(with and without additional case bindings) and A for attributes (both for
proof and theory contexts) are left as parameters.

C : command → theory → proof
C : command → proof →∗∗ proof
C : command → proof → theory
M : method → context → fact → tactic × (name ⇀ case)
M : method → context → fact → tactic
A : attribute → context × theorem → context × theorem
A : attribute → theory × theorem → theory × theorem

A proof configuration is defined as a stack of basic proof states: proof = state∗.
The stack represents the block structure of the proof text; proof commands
usually operate on the head of the stack only, except those that affect the block
structure itself.
record state =

mode :: prove | state | chain
context :: context
goal :: goal | none

Modes of operation

We distinguish three fundamental modes of operations of the Isar/VM, with the
following informal meaning:

prove awaiting direct transformation of the present claim (by method
application)

state ready to state new local items (assumptions, local claims etc.)
chain awaiting a new claim, with previous facts being indicated for

later use

48 CHAPTER 3. The Isar proof language

Isar proof commands acquire certain typings according to these three modes,
as shown in figure 3.2. This imposes an inherent structure on Isar proof texts,
according the role that proof commands may play in a particular situation.
Only those sequences of proof commands may get successfully processed by the
Isar/VM interpreter that correspond to legal paths of this diagram. Note that
further structural constraints are achieved via proper nesting of blocks, which
is not encoded into the mode field, but determined from the stack structure.

qed

qed

{ }
next

let
note

then

fix
assm

theorem

prove

chain

state

show
have

apply

done

show
have

proof

done

Figure 3.2: Transitions of Isar proof processing

This inherent fine-grained typing of proof states is a key concept of Isar/VM
proof processing. Thus we achieve both well-structured texts and incremental
checking of individual commands. In contrast, traditional tactic scripts would
operate only on a single kind of state, as may be even expressed within the Isar
framework. By restriction to improper proof commands the original Isar/VM
diagram of figure 3.2 degenerates to that of figure 3.3.

theorem

proveapply

done

Figure 3.3: Transitions of tactical theorem proving

Apparently, tactical theorem proving is like holding your breath, until the
present claim has been solved completely by direct goal refinements via meth-

3.2. Syntax and semantics 49

ods. Proper Isar proof texts would usually only perform one or zero direct steps,
in order to change quickly into the rich landscape of state mode in order to ex-
plore the present context in a casual manner. See §4.2.3 for further discussion
of the issue of “operational” versus “declarative” theorem proving in practice.

State components

Apart from the mode field, Isar proof states have clearly separated components
of “static” proof context versus “dynamic” goal information. As a general prin-
ciple, the context keeps all those items that directly correspond to declarations
given in the text (assumptions, finished claims, term and fact bindings etc.),
while the goal state contains the leftover claim that may have undergone sev-
eral direct refinements beforehand. In the operational semantics we take care
that results of proof methods may never intrude the subsequent proof text.

record context =
theory :: theory
fixes :: var∗

assms :: rule∗

terms :: name ⇀ term
cases :: name ⇀ case
facts :: name ⇀ fact
data :: data

Here theory is kept for reference to the enclosing context; it will only be changed
in a final proof step, just before handing over back to the theory level.
The fixes and assms fields correspond to logical contexts

∧
~x. ~H =⇒ . . . in HHF

normal form (cf. §2.4.1). Instead of plain propositions ~H we rather keep the
corresponding discharge rules of assumptions (see also §3.3.1).
In addition, we maintain auxiliary environments of terms, cases, facts, which do
not have any immediate logical significance, but are indispensable to support the
course of reasoning in a well-structured high-level manner, as it enables proof
commands to refer to bits and pieces of logical entities under construction.
The slot for arbitrary data, which is inherited from the theory, may hold any
further information, e.g. separate contexts for dedicated proof tools (see §7.3).

record goal =
solve :: bool
name :: name
atts :: attribute∗

statement :: prop
using :: fact
problem :: theorem

The goal fields mostly contain bookkeeping information to capture the present
state of pending claims: solve distinguishes have from show (the latter is

50 CHAPTER 3. The Isar proof language

intended to refine an enclosing claim when finished); name and atts keep the
original declaration, which is applied to the result eventually; statement holds
the original claim; using tracks any facts indicated for forward chaining (as
indicated via then), otherwise the empty list; problem holds the internal goal
state, represented as a theorem of the underlying logical framework (cf. §2.4).

Incidently, the order of individual constituents of Isar proof configurations pre-
sented above roughly corresponds to their significance in practical application
of the framework: the static context (which corresponds to a piece of proof
text up to a certain position) is of more interest than the dynamic goal infor-
mation (which is only relevant in isolated situations where direct refinement
takes place). In contrast, traditional tactical proving mostly revolves around
the goal/problem part, while being ignorant of the rest.
Nevertheless, the very purpose of that “redundant” apparatus of Isar/VM proof
configurations is to support an interpretation model of formal proof texts that
enables the writer to arrange the course of reasoning in such a way that the
reader is liberated from taking into account any accidental behavior of primitive
operations underlying arbitrary proof methods.

Interpreting commands

We are ready to define the interpretation C of proof commands as Isar/VM
transitions; recall thatM and A are still left open. Refer to chapter 2 for basic
operations, such as record field manipulations, composition of theorems (rules)
of the logical framework etc.
In order to avoid excessive notational detail, we use the convention that record
operations may be also applied to more complex structures (such as the stack
over state, or the record state over context and goal). Furthermore, partial
functions and procedures (cf. §2.1) shall be converted implicitly as required,
so plain functional notation may be used throughout our specification. For
brevity the main definition of C is presented in combinatorial style, without ever
mentioning the configuration to be transformed explicitly. Recall procedural
composition p; q and alternative choice p | q from §2.1.

C (theorem q : ϕ) = init-proof ; open-block ; prepare-term ϕ; bind-goal ;
init-goal false q ; put-mode prove
C (apply m) = assert-mode {prove}; transform-goal m; put-using []
C (done) = assert-mode {prove}; conclude-goal ; refine-enclosing ;

(store-result | (bind-result ; set-this; put-mode state))
C (proof m) = assert-mode {prove}; transform-goal m; put-mode state
C (qed m) = assert-mode {state}; assert-goal true; transform-goal m;

transform-goal finish; conclude-goal ; refine-enclosing ;
(store-result | (bind-result ; set-this; put-mode state))

3.2. Syntax and semantics 51

C ({) = assert-mode {state}; open-block ; put-goal none; open-block
C (}) = assert-mode {state};

export-this (close-block ; assert-goal false; close-block); set-this
C (next) = assert-mode {state}; close-block ; open-block ;

reset-this; put-mode state
C (let p1 = t1 and . . . and pn = tn) = assert-mode {state};

prepare-terms [t1, . . ., tn]; bind-terms [p1, . . ., pn]; reset-this
C (note q1 = ~r1 and . . . and qn = ~rn) = assert-mode {state};

prepare-facts [~r1, . . ., ~rn]; bind-facts [q1, . . ., qn]; set-this
C (fix ~x) = assert-mode {state}; map-fixes (λfixes. fixes @ ~x); reset-this
C (assm �r� q1: ~ϕ1 and . . . and qn: ~ϕn) = assert-mode {state};

prepare-termss [~ϕ1, . . ., ~ϕn]; add-assms r ; bind-facts [q1, . . ., qn]; set-this
C (then) = assert-mode {state}; put-mode chain
C (have q : ϕ) = assert-mode {state, chain}; open-block ;

prepare-term ϕ; bind-goal ; init-goal false q ; put-mode prove
C (show q : ϕ) = assert-mode {state, chain}; open-block ;

prepare-term ϕ; bind-goal ; init-goal true q ; put-mode prove

The special proof method finish encountered above ensures that a goal config-
uration ` ~χ =⇒ #ϕ is reduced to ` #ϕ with all remaining subgoals solved
by-assumption (§2.4.2), either directly or after applying a single rule from the
current prems via resolve (§2.4.2).
Several auxiliary functions for C still need to be defined (see below). This will
ultimately provide a mathematical model of the Isar/VM interpretation process
of Isabelle/Isar [Wenzel, 2001a]. The above presentation of C may already serve
as a semi-formal exposition of the general idea of Isar proof processing.

Internal operations

For the subsequent definitions of internal operations encountered in C above,
we use the notational conventions of Θ for a theory argument, ϑ for theorem,
~ϑ for fact, σ for state, and ~σ for proof. Also recall backwards application x . f
(binding tightly) from §2.1.
A few names of the Isar language shall be reserved, in the sense that these may
never be bound directly in proof texts by users, but only internally by (primitive
or derived) commands. These are ?thesis, ?this, “. . .” for terms, this, prems for
facts, and antecedent for cases.

An initial proof configuration merely consists of an initial context, which in turn
contains the enclosing theory (which is never changed until the very end of the
main proof), and inherits the global theorem environment and auxiliary data.

init-proof Θ = [(|mode = state, context = init-context Θ, goal = none|)]
init-context Θ = (|theory = Θ, fixes = [], assms = [], terms = {},

cases = {}, facts = (get-theorems Θ)(prems := []), data = get-data Θ|)

52 CHAPTER 3. The Isar proof language

Basic block management is mediated by the inherent stack structure of proof
configurations.

open-block (σ ◦ ~σ) = σ ◦ σ ◦ ~σ
close-block (σ ◦ ~σ) = ~σ

The following assertions ensure certain types of proof configurations encountered
during operation of the Isar/VM, the interpretation process simple stops on
failure of any such condition. Note that a goal record is always kept behind an
additional level of nesting, which enables next to jump blocks as expected.

assert-mode M σ =
if get-mode σ ∈ M then σ else undefined

assert-goal b (σ1 ◦ σ2 ◦ ~σ) =
if b = (get-goal σ2 6= none) then σ1 ◦ σ2 ◦ ~σ else undefined

The special fact binding this is maintained to hold the most recent result, other-
wise it is undefined in order to cause failure on forward-chaining out of nothing.

set-this (σ, ~ϑ) = σ . map-facts (λe. e(this := ~ϑ))
reset-this = map-facts (λe. e(this := undefined))

The export operation performs fundamental adjustments required to move a
theorem out of a context of local parameters and assumptions, essentially the
context difference is discharged inside-out. The

∧
-intro rule is from §2.2.2 and

generalize from §2.4.
export σ σ ′ ϑ =

let [x1, . . ., xn] = get-fixes σ − get-fixes σ ′;
[r1, . . ., rn] = get-assms σ − get-assms σ ′

in ϑ . rn · · · . r1 .
∧

-intro xn . · · · .
∧

-intro x1 . generalize ~x

Terms entered into the text are always normalized with respect to the current
environment of term bindings. The basic operation norm e t shall replace all
occurrences of schematic variables ?x by the term norm e (e ?x), i.e. lookup
the binding and normalize recursively; this operation fails for unbound vari-
ables. Moreover, unify shall perform simultaneous higher-order unification on
pairs of terms, enumerating possible result bindings. Note that immediate term
bindings are covered by degenerate patterns consisting of a single variable only.
The special dummy pattern “-” refers to a “fresh” schematic variable for each
occurrence; this allows to specify patterns where certain positions are skipped.

prepare-term t σ = (σ, norm (get-terms σ) t)
prepare-terms ts σ = (σ, map (norm (get-terms σ)) ts)
prepare-termss tss σ = (σ, map2 (norm (get-terms σ)) tss)
bind-terms [p1, . . ., pn] (σ, [t1, . . ., tn]) =
σ . map-terms (λe. e ++ unify [(p1, t1), . . ., (pn, tn)])

Explicit statements in the text give rise to automatic bindings of reserved names,
depending on the present role as a goal or result statement. It is important to

3.2. Syntax and semantics 53

note that we never peek at theorems (neither facts nor goals), but merely analyze
terms stemming from the text. A proposition ϕ of the form

∧
~x. ~H ~x =⇒ A ~x

is decomposed as follows: conclusion-of ϕ yields the term A, and antecedent-of
ϕ yields the case (~x, ~H), and argument-of ϕ yields the right-hand side of A if
that is an application (otherwise undefined).

bind-goal (σ, ϕ) = (σ
. map-terms (λe. e(?thesis := conclusion-of ϕ))
. map-cases (λe. e(antecedent := antecedent-of ϕ)), ϕ)

bind-statement ϕ σ = σ
. map-terms (λe. e(?this := conclusion-of ϕ)(“. . . ” := argument-of ϕ))

The goal operations given below manage the dynamic component of a proof con-
figuration. Initially, we setup a goal record consisting of the result specification,
the presently chained facts, and a trivial proof state represented as a theorem.
The init rule is from §2.4.

init-goal solve (name, atts) (σ, ϕ) =
σ . put-goal (|solve = solve, name = name, atts = atts, statement = ϕ,

using = if get-mode σ = chain then get-facts σ this else [],
problem = init ϕ|) . reset-this . open-block . put-goal none

Goal transformations are the only occasion for application of proof methods,
which may refer to arbitrary tactics inside (cf. §2.4).

transform-goal m (σ1 ◦ σ2 ◦ ~σ) =
let (tactic, cases) = M m (get-context σ1) (get-using σ2);

add-cases = map-cases (λe. e ++ cases)
in (σ1 . add-cases) ◦ (σ2 . map-problem tactic . add-cases) ◦ ~σ

The operation of concluding a goal exhibits the finished result in two ways, both
for export into the enclosing goal (if applicable), and for immediate binding in
the present context. The generalize and conclude rules are from §2.4.

conclude-goal (σ1 ◦ σ2 ◦ ~σ) =
let goal = get-goal σ2;
ϑ = generalize (conclude (get-problem goal));
result = (get-name goal , get-atts goal , get-statement goal , ϑ)

in ((~σ, (get-solve goal , export σ2, ϑ)), result)

In order to refine the enclosing problem (the innermost according to the struc-
ture of sub-proofs), we search the stack of proof states upwards and apply the
given theorem after export with respect to the context difference. The all-
important refine rule encountered here is from §2.4.2, which takes care of both
the conclusion and assumptions of a subgoal (according to the “#” markers
attached to premises after export). The select operation shall traverse subgoals
from left-to-right, enabling the subsequent refine to succeed on the first match.

54 CHAPTER 3. The Isar proof language

refine-enclosing (~σ, (solve, exp, ϑ)) =
if ¬ solve then ~σ
else ~σ . map-enclosing (λσ ′. map-problem (refine (exp σ ′ ϑ) ◦ select))

map-enclosing f (σ ◦ ~σ) =
if get-goal σ 6= none then map-goal (f σ) ◦ ~σ else σ ◦ map-enclosing f ~σ

Export of facts without a goal context is covered below. The purge operation
shall remove any “#” markers (§2.4) that may have got introduced by export
(markers are only significant for actual goal refinements).

export-this outer ~σ = (~σ, purge (export ~σ (outer ~σ) (get-facts ~σ this)))

Any facts emerging in the proof text (assumptions, finished goals etc.) may
be modified by attribute expressions. Recall that A interprets attributes as
context × theorem → context × theorem or theory × theorem → theory ×
theorem, depending on the context. A is lifted to lists of attributes via sequential
composition (left-to-right): A∗ [α1, . . ., αm] = A α1; . . .; A αm. The apply-facts
function given below evaluates lists of pairs of facts and attributes, returning
the modified context and accumulated results. For a single theorem this works
as follows: apply-facts (c, [([ϑ], ~α)]) = let (c ′, ϑ ′) = A∗ ~α (c, ϑ) in (c ′, [[ϑ ′]]).
The general definition uses the iterate combinator from §2.1.

apply-facts = iterate (λ(c, (~ϑ, ~α)). iterate (A∗ ~α) (c, ~ϑ))

Referenced facts are retrieved from the environment and modified by attributes.
Binding of facts may involve additional attributes on the left-hand side of the
specification, which are applied just before the actual environment update.

prepare-facts [(a1, ~α1), . . ., (an, ~αn)] σ =
apply-facts (σ, [(get-facts σ a1, ~α1), . . ., (get-facts σ an, ~αn)])

bind-facts [(a1, ~α1), . . ., (an, ~αn)] (σ, [~ϑ1, . . ., ~ϑn]) =
let (σ ′, [~ζ1, . . ., ~ζn]) = apply-facts (σ, [(~ϑ1, ~α1), . . ., (~ϑn, ~αn)])
in (σ ′ . map-facts (λe. e ++ [(a1, ~ζ1), . . ., (an, ~ζn)]), ~ζ1 @ . . . @ ~ζn)

The proven result of a finished proof is either put back into the enclosing theory
(concluding the main proof altogether), or bound in the local proof context for
continued proof operation.

store-result ([σ], (a, ~α, ϕ, ϑ)) =
let Θ = get-theory σ; (Θ ′, [[ϑ ′]]) = apply-facts (Θ, [([ϑ], ~α)])
in Θ ′ . map-theorems (λe. e(a := [ϑ ′]))

bind-result (σ, (a, ~α, ϕ, ϑ)) =
(σ . bind-statement ϕ, [[ϑ]]) . bind-facts [(a, ~α)]

Assumptions are introduced in chunks, giving a list of proposition lists. This
additional structure merely serves for separate naming of the resulting local
facts, premises are flattened internally. The assumption rule is from §2.2.2 and
generalize from §2.4.

3.2. Syntax and semantics 55

add-assms r (σ, [~ϕ1, . . ., ~ϕn]) =
let [~ϑ1, . . . ~ϑn] = map2 (generalize ◦ assumption) [~ϕ1, . . ., ~ϕn]
in (σ . map-assms (λassms. assms @ [r]) . bind-statement (last ~ϕn)
. map-facts (λe. e(prems := e prems @ ~ϑ1 @ . . . @ ~ϑn)), [~ϑ1, . . . ~ϑn])

An example interpretation

We briefly review the operation of the Isar/VM interpreter on a small synthetic
example, which particularly illustrates the policy of interpretation that eventu-
ally leads to application of primitive inferences (notably refine given in §2.4.2).
The proof text fragment below merely covers the main elements of generic assm
and show in the context of a different goal (have). In fact, most other Isar
commands mostly perform bookkeeping steps only, which essentially serve as a
preparation for such fundamental incidents of actual goal refinement.

1. have A =⇒ B
2. proof succeed
3. assm �disch� A
4. show B
5. 〈proof 〉
6. qed

Γ ∪ {A} ` ϕ
Γ ` #A =⇒ ϕ

(disch)

Here we are still confined to certain “raw” expressions of Isar commands that
would normally not occur in reality, i.e. the identity method succeed (see §3.3.2)
and the assm primitive supplied with an inference rules for discharging (and
marking) the assumption. See also §3.3 for definitions of derived commands and
proof methods for actual end-user applications.
Subsequently, we give the generated sequence of internal operations, while sup-
pressing successful assertions (which merely result in identities). The second
column below exhibits the trace of primitive inferences encountered during in-
terpretation. The initial proof configuration shall be in state mode. We further
assume that “〈proof 〉” refers to a successful sequence of commands ending with
done or qed (returning to the original nesting level of the corresponding show).

1. C (have A =⇒ B):
open-block
prepare-term (A =⇒ B)
bind-goal
init-goal false (this, []) init (A =⇒ B) = ` (A =⇒ B) =⇒ #(A =⇒ B)
put-mode prove

2. C (proof succeed):
transform-goal succeed
put-mode state

56 CHAPTER 3. The Isar proof language

3. C (assm �disch� A):
prepare-termss [[A]]
add-assms disch assumption A = {A} ` A
bind-facts [(this, [])]
set-this

4. C (show B):
open-block
prepare-term B
bind-goal
init-goal true (this, []) init B = ` B =⇒ #B
put-mode prove

5. C 〈proof 〉:
...

conclude-goal conclude ({A} ` #B) = {A} ` B
refine-enclosing disch ({A} ` B) = ` #A =⇒ B

refine (` #A =⇒ B)
(` (A =⇒ B) =⇒ #(A =⇒ B)) = ` #(A =⇒ B)

bind-result
set-this
put-mode state

6. C (qed):
transform-goal succeed
transform-goal finish
conclude-goal conclude (` #(A =⇒ B)) = ` A =⇒ B
refine-enclosing
bind-result
set-this
put-mode state

The terminal context now holds a fact assignment of this = [` A =⇒ B].

3.2.4 Recovering static syntax

As the most basic property of the Isar/VM transition system we shall see how
“static” syntax of proof texts may be recovered, by deriving a context-free gram-
mar that approximates the language of legal proof texts. To this end we inspect
the definition of C (§3.2.3) from an abstract viewpoint, such that only the mode
field and the stack structure (block nesting) is taken into account.
The only commands that may actually affect blocks are either goals (theorem,
have, show), conclusions of proofs (done, qed), or separate block commands
(“{”, “}”, next). Blocks are always opened in pairs, with an optional goal
placed in between. So we may either get a “goal sandwich” of the form “〈goal〈”
as produced by goal commands, or a plain block opening “〈〈” produced by “{”.

3.2. Syntax and semantics 57

We also see that proof conclusions exactly match goal sandwiches and “}” plain
openings, while next copes with either case (preserving it). Consequently, proof
and statement blocks are always properly nested, without interfering each other.
Now consider the mode behavior of proof commands given in figure 3.2. Let
proof-statement refer to the sub-language of commands that are successfully
processed in state mode. Apparently this category consists of properly nested
blocks, basic context statements, or goal statements with a complete proof (af-
ter an optional chain indicator then). The category proof is unfolded from
prove mode in a similar fashion: it consists of (optional) initial scripts of apply
elements, followed by properly nested proof texts, or the done terminator.
Together with the linking of the proof language to the theory level (as indicated
in figure 3.1) we may now easily complete a syntactic approximation of well-
formed Isar proof texts by giving the following grammar (below we also omit
command arguments for clarity).

theory-statement = types | consts | axioms | theorems
| theorem proof

proof = apply∗ (proper-proof | done)
proper-proof = proof proof-statement∗ qed

proof-statement = { proof-statement∗ }
| next | let | note | fix | assm
| then? goal-statement

goal-statement = have proof | show proof

This grammar could be refined further, e.g. to include the state of current facts
as well. Consequently, legal use of then could be specified more explicitly by
grammatical means, ruling out malformed phrases like “next then”.

Note that the above presentation only covers the core language of Isar, stemming
from the basic set of commands considered here. Further language extensions
to be introduced later on (see §3.3, chapter 5, chapter 6, chapter 7) may either
provide concrete method and attribute definitions, or extend the primary com-
mand language itself. The former may never affect the integrity of the previous
Isar grammar, since methods and attributes are always clearly delimited by their
enclosing syntax. In contrast, derived commands could easily lead to syntactic
conflicts, due to the non-modular nature of arbitrary grammar specifications.
In practice, we may achieve robust syntax extensions by restricting the “defini-
tional” pattern for derived Isar commands essentially to a new keyword (with
optional arguments) that expands to a sequence of existing command phrases;
complete (local) proofs may be safely incorporated as well (e.g. see the syntax
of obtain introduced in §5.3.1).
This disciplined way of building up the Isar language results in a syntactic
environment that is both very clean and open-minded towards extensions.

58 CHAPTER 3. The Isar proof language

3.3 Generic support for natural deduction

The abstract Isar framework covered so far still needs a few standard elements
to enable users to express actual natural deduction concepts properly. This
includes concrete context elements (like assumptions, see §3.3.1), attributes and
proof methods (for composition and rule application, see §3.3.2), as well as basic
derived commands that allow Isar texts to be written more fluently (see §3.3.3).

3.3.1 Context elements

Speaking in terms of the pure λ-calculus model of natural deduction, context
elements closely correspond to abstraction. Recall that our primitive frame-
work (§2.2) actually provides three different layers, with abstraction of the term
language (function space ⇒), universal parameters (quantification

∧
), and hy-

pothetical proofs (implication =⇒).
No explicit contexts are required when building up the abstract syntax language,
terms are built-up and type-checked directly (§2.2.1). Furthermore, universal
parameters merely introduce local elements in the present proof (via fix, see
§3.2.3), which are just generalized on export without imposing any additional
hypotheses on the result (see also §5.2.1 for practical issues).
In contrast, actual logical hypotheses need to be taken care of specifically. As-
sumptions at the propositional level are “discharged” in a specific manner even-
tually, depending on the particular context element involved. To this end the
basic operational model of Isar (§3.2.3) provides the generic assm primitive that
is parameterized by an inference rule to determine the exact behavior. Based
on this core element, we shall now define actual user-level context commands,
namely assume for “strong” assumptions, presume for “weak” assumptions,
def for local definitions, and case for invoking symbolic contexts. We first
extend the primary Isar language (§3.2.1) as follows.

assume (name-atts:)? prop+ (and (name-atts:)? prop+)∗

| presume (name-atts:)? prop+ (and (name-atts:)? prop+)∗

| def (name-atts:)? var ≡ term
| case name-atts

The conventions for default arguments (§3.2.1) are augmented for def : the
standard name (of name-atts) shall be x-def, where x is the defined variable.

The three most basic Isar context elements are directly defined in terms of assm,
via the rule schemes of discharge#, discharge, and expand given below.

assume q1: ~ϕ1 and . . . and qn: ~ϕn =
assm �discharge# ~ϕ1 . . . ~ϕn� q1: ~ϕ1 and . . . and qn: ~ϕn

presume q1: ~ϕ1 and . . . and qn: ~ϕn =
assm �discharge ~ϕ1 . . . ~ϕn� q1: ~ϕ1 and . . . and qn: ~ϕn

def q : x ≡ t = fix x assm �expand x ≡ t� q : x ≡ t

3.3. Generic support for natural deduction 59

Γ ∪ {~ϕ} ` ψ
Γ ` #~ϕ =⇒ ψ

(discharge# ~ϕ)
Γ ∪ {~ϕ} ` ψ
Γ ` ~ϕ =⇒ ψ

(discharge ~ϕ)

Γ ∪ {x ≡ t} ` ψ
Γ ` ψ[t/x]

(expand x ≡ t)
proviso: x not free in Γ or t

These rules are clearly derivable within the basic logical framework (§2.2). First
strengthen the local contexts to make sure they actually mention the additional
assumptions as stated above. To get discharge iterate the =⇒-intro rule, the
same works for discharge# (recall that “#” marks do not have any logical
significance §2.4.1). In order to derive expand discharge the equality and gen-
eralize over x (which does not affect the context nor the right-hand side), then
specialize with [x/t] and apply modus ponens with reflexivity ` t ≡ t.
We also observe that any of these rules really get rid of the assumptions intro-
duced beforehand: given “assm �r� ~ϕ” the rule r needs to map Γ ∪ ~ϕ ` ψ to
Γ ` ψ ′, in order to guarantee that the Isar/VM interpretation process (§3.2.3)
does not fail unexpectedly due to pending hypotheses.

The only difference of assume and presume is how the result is treated in a goal
context (cf. §3.2.3). As indicated by the “#” markers, the new premises resulting
from discharged strong assumptions are forced to unify with the original goal
context, while the weak version simply leaves former hypotheses as new goals (cf.
refine in §3.2.3). See also §5.2.1 for practical use of these Isar context elements.

The case command provides an abbreviation for several fix/assume elements.
It invokes a local context according to the assignment of the current proof state
σ. Given name a and (~x, λ~x. ~ϕ) = get-cases σ a, we define case as follows.

case a [~α] = fix ~x assume a [~α]: ~ϕ

Recall that there is no separate Isar command to bind case names. Apart from
the automatic antecedent case (§3.2.3, see also §5.2.5), further cases may be only
introduced by suitable proof methods (like cases and induct covered in §5.4).

3.3.2 Methods and attributes

Method combinators

Proof methods may refer to arbitrary procedures that operate on primitive goal
configurations. Potentially infinite sequences of results may represent multiple
choices, e.g. from a fixed collection of rules, or enumeration of higher-order
unifiers, or arbitrary internal proof search. Isar provides a standard collection of
method combinators to compose such procedures in a simple fashion (analogous
to regular expression operators).

60 CHAPTER 3. The Isar proof language

m1, m2 sequential composition of methods
m1 | m2 alternative choice of methods
m? try method
m+ repeat method (at least once)
succeed identity method

Sequential composition “,” and repeat “+” are most frequently used in practice;
“m?” coincides with “m | succeed”, repeating a method including zero times
may be expressed as “(m+)?”, there is no separate “m∗”.
Note that excessive use of method combinators is actually an indication for
highly operational expressions of unstructured proof scripts. In principle, a
very long “script” of proof methods (m1, . . ., mn) may be included in a single
proof step. Structured Isar texts involve very simple method expressions only.

Basic methods

We introduce a few generic proof methods below. The syntactic category of
method (§3.2.1) is extended as follows.

“(” rule name-atts+ “)”
| rule
| this
| assumption
| −
| “(” insert name-atts+ “)”
| “(” unfold name-atts+ “)”
| “(” fold name-atts+ “)”

The rule method provides a direct interface to the primary inference mechanism
of the pure framework, namely higher-order resolution (cf. §2.4). The general
form “(rule ~a)” takes an explicit collection of rules to be tried from left to right.
The (complete) list of chained facts this is taken into account as well. Given
some rule r of ~a, the method performs goal (r · this) on the current goal state
(i.e. the rule is reduced by applying all facts in parallel, and the result applied
to the first subgoal).
Omitting the argument of the rule method means to refer to “standard” rules
declared in the present context. The attributes of intro and elim take care of
appropriate rule declarations; dest declares eliminations presented in “projec-
tion” format, applying ` A =⇒ (A =⇒ C) =⇒ C first (e.g. ` ∀ x . P x =⇒ P t
is turned into ` ∀ x . P x =⇒ (P t =⇒ C) =⇒ C). Eliminations are tried before
introductions, unless there are no chained facts at all, which is interpreted as a
pure introduction pattern.

The this method applies all chained facts immediately (from left to right), with-
out any rule in between; given chained facts this = [ϑ1, . . ., ϑn], the method
performs (goal · ϑ1) · . . . · ϑn, i.e. just goal · this in the common case of a
singleton chained fact.

3.3. Generic support for natural deduction 61

The assumption method applies exactly one rule immediately, either a sin-
gleton chained fact, or one of the current prems of the proof context. New
premises emerging from application of non-atomic rules are solved locally using
by-assumption (§2.4.2).
The “−” method merely inserts all chained facts into the goal configuration (the
do-nothing form with zero facts is mostly encountered in practice). The insert
method inserts exactly the argument facts, but ignores the chained ones.
The unfold method normalizes a problem by a given collection of equalities
(by repeated application of the substitution and extensionality rules of “≡”, cf.
§2.3). Its counterpart fold normalizes by swapped rules.

Incidently, the most common instances of the methods this, assumption, and
“−” may be expressed in terms of the basic rule one as follows.

this = (rule `
∧

A. A =⇒ A)
for singleton facts

assumption = (rule prems)
for empty facts and atomic assumptions

− = (rule `
∧ ~A C . ~A =⇒ (~A =⇒ C) =⇒ C)

for atomic facts (same length as ~A)

Basic operations on facts

The following attributes operate on theorems, without changing the current
context. We extend the syntactic category attribute (§3.2.1) as follows

of term+

| OF name-atts+

| THEN name-atts
| symmetric

The attribute of provides the primitive operation of positional instantiation,
as in the fact expression “a [of t1 . . . tn]”. The OF attribute performs “ap-
plication” of a number of facts via higher-order resolution (cf. §2.4), as in the
expression “r [OF a1 . . . an]”; the THEN attribute does the same, but ex-
changes the roles of operator and operand (which needs to be singleton), as in
“a [THEN r]”. The symmetric attribute swaps equality facts. The method
expression “(fold ~a)” is actually the same as “(unfold ~a [symmetric])”.

3.3.3 Derived commands

We shall introduce a few very simple derived commands on top of the set of
primitives provided so far. First of all, the primary syntax of Isar commands
(cf. §3.2.1) is extended as follows.

62 CHAPTER 3. The Isar proof language

lemmas (name-atts =)? name-atts+

| lemma (name-atts:)? prop
| hence (name-atts:)? prop
| thus (name-atts:)? prop
| from name-atts+ (and name-atts+)∗

| with name-atts+ (and name-atts+)∗

| by method method?

| ..
| .

The default of the second method argument of by shall be succeed (just as for
the qed constituent, cf. §3.2.1). The derived commands are defined as follows.

lemmas a [~α] = ~r = theorems a [~α, tag lemma] = ~r
lemma a [~α]: ϕ = theorem a [~α, tag lemma]: ϕ

hence = then have
thus = then show

from ~q = note ~q then
with ~q = from ~q and this

by m1 m2 = proof m1 qed m2

.. = by rule
. = by this

This collection of seemingly trivial shorthands has emerged from practical work
performed in Isar, achieving significant improvements in both reading and writ-
ing of proof texts. Nevertheless, some care has to be taken whenever any further
abbreviations shall be added, since excessive use of specific elements may even-
tually obscure the meaning of texts for casual readers.

Below we observe some further equalities of Isar commands due to the opera-
tional semantics (§3.2.3). First of all, we achieve alternative characterizations
of basic operations involving the important then primitive.

from this = then
from this have = hence
from this show = thus

The following equality of by enables writers to take apart the individual phases
of terminal proof steps in a fine-grained manner. This turns out as quite hand-
some in interactive development and debugging.

by m1 m2 = apply m1 apply m2 apply (assumption+)? done

3.4 Further concepts

In principle, the Isar/VM interpretation process presented so far (§3.2.3) is
already sufficiently powerful to support high-level proof texts. The real im-
plementation of Isabelle/Isar [Wenzel, 2001a] covers a few fine points, though,

3.4. Further concepts 63

that turn out as quite important to improve overall usability of Isar in practice.
Below we briefly review these further issues, which are all outside of the core
logical framework (§2.2).

3.4.1 Casual term abbreviations

Substantial parts of structured proofs consist of propositions (and sub-terms)
given explicitly in the text. This is an important prerequisite to achieve human-
readable presentations in the first place, unlike operational proof scripts that
refer to internal goal transformations only. On the other hand, an excessive
amount of concrete λ-terms in the text tends to degrade readability in its own
right. Adequate syntactic abstractions turn out as a key issue of expressing
formal reasoning succinctly. Isar already provides the concept of term abbrevi-
ations via the let command (§3.2.1). In practice, the extra overhead of separate
abbreviation statements in the text is often too cumbersome.
Isabelle/Isar offers the additional is element that admits term abbreviations
to be introduced on the fly. The basic syntax of Isar commands (§3.2.1) is
augmented to include optional is-patterns after any occurrence of term or prop.
The concrete syntax of these casual abbreviation forms is as follows:

term-patterns = “(” (is term)+ “)”
prop-patterns = “(” (concl? is prop)+ “)”

By using “(is p)” any term mentioned in the text may get immediately analyzed
by (higher-order) matching against some pattern p. This essentially provides an
immediate benefit in return of the duty to write explicit statements in the first
place. For example, the annotated claim “have a = b (is ?lhs = ?rhs)” enables
succinct references to the (potentially unwieldy) terms a and b later on. Say
the proof proceeds by an antisymmetry argument, then the body may just state
“show ?lhs ≤ ?rhs” and “show ?rhs ≤ ?lhs”. Such an abstract presentation
may also clarify the actual proof pattern involved.
The concl specifier for prop-patterns indicates matching against the conclusion
of a nested meta-level implication, e.g. “have A =⇒ C (concl is ?X)” has the
same effect as “have A =⇒ C (is - =⇒ ?X)” (which uses the dummy pattern
“-”, cf. §3.2.3). The form “have ϕ (concl is ?thesis)” documents the builtin
binding of ?thesis (cf. §3.2.3), but only if ϕ does not have any outer parameters.
Likewise does “have ϕ (concl is - = . . .)” represent the implicit argument
binding of “. . .”, at least in the common case of equational propositions. Recall
that “. . .” technically acts like a schematic term variable (§3.2.3).

The full power of term abbreviations is exhibited by actual higher-order match-
ing against complex statements. Here the main application is proof by induction
(see also §5.4). The idiom of “have ϕ (is ?P n)” essentially decomposes a state-
ment ϕ = . . . n . . . n . . . into a predicate ?P that abstracts over the occurrences
of the fixed variable n in the original body. The standard procedure of enumer-
ating higher-order unifiers in Isabelle [Paulson, 1989] ensures that ?P really

64 CHAPTER 3. The Isar proof language

abstracts over all occurrences of n (as is normally intended by the user). For
example, this binding of ?P enables succinct expressions of relevant statements
of mathematical induction, with ?P 0 for the base case, ?P n for the induction
hypothesis and ?P (Suc n) for the conclusion of the step case. See also §5.4 for
further advanced proof patterns.

Casual term abbreviations of Isabelle/Isar generally have the great virtue to
reduce the need for special proof language constructs. For example, DECLARE
[Syme, 1997a] [Syme, 1998] [Syme, 1999] requires separate provisions of “ihyp
macros” for induction patterns. Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muza-
lewski, 1993] [Wiedijk, 1999] includes dummy goal statements like existence or
uniqueness to cover certain proof obligations arising in particular specification
mechanisms (see also the related discussion in §7.5.1).
Moreover, analyzing term structure by higher-order matching serves as a vi-
able replacement for “direct term manipulation”, potentially with heavy user-
interface support, as proposed in [Bertot and Thery, 1996] [Bertot et al., 1997].
In contrast to interactive manipulations performed at run-time by the user,
casual abbreviations in Isar may easily document advanced structural decom-
positions within the primary text, just by a few λ-term patterns.

3.4.2 Formal comments and antiquotations

From the perspective of recipients the ultimate intention of the Isar language
is to describe formal documents, which consist of several theories with both
specifications and proofs alike (cf. §3.2.1). In reality, such theory texts may
also contain additional information outside the formal logic, like sectioning and
informal explanations by the writer.
To this end, Isabelle/Isar [Wenzel, 2001a] provides several “markup commands”
like chapter, section, subsection, and text (each taking a text argument).
Concerning Isar itself, markup commands do not have any formal meaning, but
are still part of the syntax of the language. Actual formal commands considered
so far may also include “marginal comments” of the form “— text” that are
related to particular entities, like individual declarations of consts (cf. §3.2.1).

consts
c1 :: τ1 — blah
. . .
cn :: τn — blub

Markup commands and marginal comments qualify as formal comments since
there is an explicit relationship to formal elements, despite being devoid of
any logical semantics themselves. Note that in commonly encountered “source
comments” of existing languages there is usually no clear indication of the rela-
tionship with formal entities. Such comments may typically float around in the
input text in a completely undisciplined manner.

3.4. Further concepts 65

The content of formal comments is ultimately passed to the document prepa-
ration front-end, which is (PDF)LATEX in Isabelle/Isar. The text essentially
consists of source code for the typesetting system, but is passed through a
preparatory stage in Isabelle. Text specifications in Isabelle/Isar may contain
embedded references to formal entities, such as well-typed terms and proposi-
tions, or theorems of the present context.
The concept of embedding interpreted parts into uninterpreted (“quoted”) text
is called anti-quotation, following existing concepts of LISP folklore. The basic
syntax of anti-quotations in Isabelle/Isar is “@{name args}” (see also [Wenzel,
2001a]). In practice, the most important antiquotations are as follows.

@{term t} well-typed term
@{prop ϕ} well-typed proposition
@{thm ~a} facts (lists of theorems)
@{text s} uninterpreted text

These anti-quotations process their argument within the formal context (§3.2.3),
and emit the (checked) result into the document output in a pretty-printed form,
just like any other Isar text. The degenerate text anti-quotation merely outputs
the argument string directly, but treats mathematical symbols according to the
Isabelle/Isar style (cf. §1.5) rather than raw LATEX. Thus unchecked “formal”
descriptions may use the same notation as real Isabelle/Isar objects, without
demanding ad-hoc tweaks of the LATEX math mode.

The overall effect of this seamless integration of formal and informal portions of
text into a single Isabelle/Isar source considerably reduces the effort to report
about theory developments in a consistent manner. Unlike existing approaches
for “literate programming” (notably Knuth’s WEB system) there is no need to
filter the formal and informal views separately. In Isabelle/Isar, finished proof
documents are output as a side-effect of formal proof processing, which in turn
merely ignores certain parts of the text.

3.4.3 Type inference and polymorphism

In theory, we may easily pretend that all terms given in Isar proof texts are
fully annotated with types, according to the type-checking rules of the under-
lying framework (§2.2). In practice, users may be spared from explicit type
annotation chores via the well-established technique of automated type recon-
struction, which is also known as type inference. This happens to be already
present in the Isabelle/Pure implementation [Paulson and Nipkow, 1994].
It is important to note that such syntactic typing issues need not be considered
within the actual logical framework, but only as an “accidental” feature of the
implementation. This is analogous to the concept of parsing, which automati-
cally reconstructs abstract syntax trees from user input presented in handsome
concrete syntax. The theory of parsing was considered an issue of formal logic
long ago, but it has lost its relevance eventually, as standard parser tools have

66 CHAPTER 3. The Isar proof language

become well-established.

In order to make simple type inference available to Isar proof texts, we maintain
the following additional fields of variable typings and used type variables in the
proof context structure (§3.2.3).

typing-frees :: name ⇀ type
typing-vars :: name ⇀ type
used-types :: set of name

Here the environments typing-frees and typing-vars determine the types for
variables, as encountered in the proof text processed so far. Whenever new terms
are prepared for inclusion in the text, we first perform standard (mutual) type
inference within the present context of typings, and then use the resulting fully-
typed term to extend these declarations. In order to guarantee most general
results, type inference occasionally needs to invent “new” type variables; these
are chosen as apart from the set of used-types, which is maintained accordingly.

The resulting discipline of type reconstruction proceeds sequentially from left
to right through a given list of Isar commands (while observing block structure
in the obvious manner). The scope of mutual type inference is limited to the
arguments of each individual Isar command, e.g. “assume ϕ1 . . . ϕn” covers the
propositions ~ϕ simultaneously. In practice, this scheme is fair enough most of
the time, although rather annoying situations may occur whenever the inferred
typing is more general than intended by the writer (due to lack of typing infor-
mation from future text). This may cause unexpected failure of both further
type checking and logical inferences (e.g. with rules that only work for specific
type instances, probably due to overloading).
Certainly, writers may always fall back on explicit type annotations, without
requiring readers of Isar proof texts to care very much. On the other hand,
Isabelle users generally expect typing issues to be treated automatically be-
hind the scenes. Any failures encountered here are apt to cause considerable
confusion, until the actual problem is figured out by hand eventually.

The refined type inference scheme according to Hindley-Milner (also known
as “let-polymorphism”) [Hindley, 1969] [Milner, 1978] is slightly more flexible.
This improved typing discipline needs to extend pure λ-calculus by a separate
let-binder: in the term let x = t in u the variable x is bound locally to t
within the body u; the canonical conversion rule is (let x = t in u) −→ u[t/x].
This operational idea could be simulated in pure λ-calculus as a β-redex (λx .
u) t, but the key point of Hindley-Milner polymorphism is to have let as a
separate primitive and provide a specific typing rule to achieve a localized form
of schematic polymorphism.
Hindley-Milner polymorphism also extends the language of simple types by type
schemes, which include “generalized” type variables that may be instantiated
arbitrarily. In the literature this is usually represented by a flat prefix of uni-
versal type quantifiers “∀α”. In Isabelle/Pure we may express the same idea

3.4. Further concepts 67

via schematic type variables ?α (§2.2.1), so the canonical typing rule for let
expressions becomes this:

t : σ

[x : σ̂]....
u: τ

(let x = t in u): τ

Here the inferred type σ of the local binding is replaced by a most general type
scheme σ̂ when type-checking the body; all fixed type variables α in σ that do
not occur in any fixed term variable of the context become schematic ones ?α
in σ̂. Thus the typing of x may be instantiated in the body later on.

In order to incorporate this refined typing discipline into the Isar/VM interpre-
tation process, we merely introduce another field in the proof context.

fixed-types :: set of name

During Isar proof processing, the fixed-types component is maintained to hold
the set of type variables that are still considered “fixed”, due to occurrences in
types of term variables that are manifest in the previous text (bound variables
and constants do not matter here). Now we only need to identify suitable kinds
of let-bindings in Isar where type schemes may be generalized locally.

Recall that the Isar/VM interpretation process (§3.2.3) may be understood as a
certain policy for composing proofs according to general λ-calculus concepts (cf.
§2.2, and see §5.2 for the user-level view). From this perspective, it is easy to see
that two kinds of Isar context elements qualify as polymorphic let binders: term
abbreviations introduced via let (§3.2.1) or is (§3.4.1), and local facts emerging
from the primitives note, have, or show (§3.2.1).
Note that polymorphic treatment of proper abstraction elements like fix and
assume (§3.3.1), would demand actual “polymorphic λ-calculus”, such as λ2 or
beyond (e.g. see [Barendregt, 1992]), which would quickly lead into a substan-
tially more complex situation (with undecidable problems). On the other hand,
variables introduced by unconstrained fix statements in isolation need not be
typed until their actual occurrence in the subsequent text; the stages of binding
and typing of variables may be kept separate without further ado.
Local definitions “def x ≡ t” (§3.3.1) could in principle be treated as polymor-
phic, too, but our present formulation within Isar makes def appear like the
monomorphic “fix x assume x ≡ t”. This minor drawback is hard to fix in
reality, mainly because the Isabelle/Pure implementation [Paulson and Nipkow,
1994] does not admit fixed variables at different type instances within theorems.
Note that let and is are significantly more important in practice (§3.4.1).

In order to get an idea of how Hindley-Milner typing works out in Isar, we
consider the following synthetic example.

68 CHAPTER 3. The Isar proof language

let ?f = λx . x

— ?f :: ?α ⇒ ?α

have ?f ?f = (λx . x)

— first occurrence ?f :: (α ⇒ α) ⇒ (α ⇒ α)

— second occurrence ?f :: α ⇒ α

by (rule refl)

— this = ` (λx :: ?α. x) = (λx :: ?α. x)

Here ?f is bound to the identity function, with types being generalized fully.
When checking the subsequent goal statement the typing of ?f is instantiated
twice, and held fixed during the proof. In the resulting theorem types are again
fully generalized.

In reality, actual polymorphic proof texts are rarely encountered at all. The
key virtue of Hindley-Milner polymorphism in Isar is to achieve a well-defined
discipline that is able to amend (most of) the problems with overly general
inferred types due to incremental processing of the text. Recall that the original
problem has been caused by lack of syntactic relationship of previous proof text
with potential follow-up material. In such a situation naive type inference would
invent new (fixed) type variables, expressing unrestricted generality. The refined
typing discipline due to Hindley-Milner is able to generalize these variables
for the very same reason they got introduced in the first place, which gives
subsequent typing stages a chance to instantiate these as required.
Experience with Isabelle/Isar shows that this fine-tuned discipline is really able
to relieve proof writers from most typing issues in practice. Certainly, the
situation would be much simpler with batch-mode proof processing, where the
whole text may be covered at once, such as in DECLARE [Syme, 1997a] [Syme,
1998] [Syme, 1999]. Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993]
[Wiedijk, 1999] even requires users to give type annotations themselves.

Chapter 4

Example: First-Order Logic

We present a formulation of intuitionistic first-order logic as canonical instantia-
tion of the generic Isar framework. This demonstrates how the existing tradition
of object-logic declarations in the Isabelle environment may be extended to cover
readable presentations of formal proofs as well. Handling both specifications and
proofs in a high-level manner, Isabelle/Isar qualifies as a truly complete logical
framework.

By the example of first-order logic we also discuss the most basic techniques of
basic natural deduction proofs, both within Isar as well as some other systems.

4.1 Formal development

theory First-Order-Logic = Pure:

The present theory development introduces single-sorted intuitionistic first-
order logic with equality. We are giving common abstract and concrete syntax,
basic axioms, definitions and derived rules, together with readable formal proofs
of standard derived rules and further examples.

4.1.1 Syntax

There are two categories of higher-order abstract syntax for the object language
under consideration: i for “individuals” and o for “object statements”; the
latter shall be implicitly used as a meta-logical judgment of derivable sentences.

typedecl i
typedecl o

69

70 CHAPTER 4. Example: First-Order Logic

judgment
Trueprop :: o ⇒ prop (- 5)

4.1.2 Propositional logic

The basic propositional connectives are axiomatized canonically as follows.

consts

false :: o (⊥)

imp :: o ⇒ o ⇒ o (infixr −→ 25)

conj :: o ⇒ o ⇒ o (infixr ∧ 35)

disj :: o ⇒ o ⇒ o (infixr ∨ 30)

axioms

falseE [elim]: ⊥ =⇒ A

impI [intro]: (A =⇒ B) =⇒ A −→ B

mp [dest]: A −→ B =⇒ A =⇒ B

conjI [intro]: A =⇒ B =⇒ A ∧ B

conjD1: A ∧ B =⇒ A

conjD2: A ∧ B =⇒ B

disjE [elim]: A ∨ B =⇒ (A =⇒ C) =⇒ (B =⇒ C) =⇒ C

disjI1 [intro]: A =⇒ A ∨ B

disjI2 [intro]: B =⇒ A ∨ B

The following derived rule of simultaneous conjunction elimination is usually
more convenient to use than referring to the individual projections separately.

theorem conjE [elim]: A ∧ B =⇒ (A =⇒ B =⇒ C) =⇒ C

proof −
assume ab: A ∧ B

assume r : A =⇒ B =⇒ C

show C

proof (rule r)

from ab show A by (rule conjD1)

from ab show B by (rule conjD2)

qed

qed

Furthermore, we introduce the derived concepts of plain truth and negation.

constdefs
true :: o (>)
> ≡ ⊥ −→ ⊥
not :: o ⇒ o (¬ - [40] 40)
¬ A ≡ A −→ ⊥

4.1. Formal development 71

theorem trueI [intro]: >
proof (unfold true-def)

show ⊥ −→ ⊥ ..
qed

theorem notI [intro]: (A =⇒ ⊥) =⇒ ¬ A
proof (unfold not-def)

assume A =⇒ ⊥
thus A −→ ⊥ ..

qed

theorem notE [elim]: ¬ A =⇒ A =⇒ B
proof (unfold not-def)

assume A −→ ⊥ and A
hence ⊥ .. thus B ..

qed

4.1.3 Equality

Equality of individuals is axiomatized in a high-level manner, using reflexivity
and substitution as primitive. The remaining equivalence properties are easily
established as derived rules. Congruence properties are already covered by the
substitution rule, so these are not stated explicitly.

consts
equal :: i ⇒ i ⇒ o (infixl = 50)

axioms
refl [intro]: x = x
subst : x = y =⇒ P(x) =⇒ P(y)

theorem trans: x = y =⇒ y = z =⇒ x = z
by (rule subst)

theorem sym [elim]: x = y =⇒ y = x
proof −

assume x = y
from this and refl show y = x by (rule subst)

qed

4.1.4 Quantifiers

Within the underlying logical framework quantifiers are simply certain opera-
tors on predicates, while concrete syntax for “binders” recovers commonly used
notation.

consts

All :: (i ⇒ o) ⇒ o (binder ∀ 10)

72 CHAPTER 4. Example: First-Order Logic

Ex :: (i ⇒ o) ⇒ o (binder ∃ 10)

axioms

allI [intro]: (
∧

x . P(x)) =⇒ ∀ x . P(x)

allD [dest]: ∀ x . P(x) =⇒ P(a)

exI [intro]: P(a) =⇒ ∃ x . P(x)

exE [elim]: ∃ x . P(x) =⇒ (
∧

x . P(x) =⇒ C) =⇒ C

Here is a simple example of reasoning with quantifiers; the statement has been
taken from a [Paulson, 2001a].

lemma (∃ x . P(f (x))) −→ (∃ y . P(y))

proof

assume ∃ x . P(f (x))

thus ∃ y . P(y)

proof

fix x assume P(f (x))

thus ?thesis ..

qed

qed

Subsequently, we establish another well-known result of quantifier reasoning
(naturally the converse statement does not hold in general).

lemma (∃ x . ∀ y . R(x , y)) −→ (∀ y . ∃ x . R(x , y))
proof

assume ∃ x . ∀ y . R(x , y)
thus ∀ y . ∃ x . R(x , y)
proof

fix x assume a: ∀ y . R(x , y)
show ?thesis
proof

fix y from a have R(x , y) ..
thus ∃ x . R(x , y) ..

qed
qed

qed

end

4.2 Discussion

4.2.1 Generic proof support for object-logics

Our basic formulation of FOL as an Isabelle object-logic closely follows a similar
example given in [Paulson, 2001a], while proofs have been expressed in the Isar

4.2. Discussion 73

proof language, rather than traditional tactic scripts.
Purely declarative specification of logical syntax and axioms, together with de-
rived rules expressed as explicit theorem statements within the meta-logic, have
been the key concepts of the basic Isabelle/Pure framework from its very begin-
nings [Paulson, 1986] [Paulson, 1989] [Paulson, 1990]. In contrast, the original
tradition of the “LCF” and “HOL” family of systems would have required ex-
plicit programming of derived rules as functional programs written in the ML
“meta-language”; see also the historical account given in [Gordon, 2000].
From this perspective, the Isar approach to readable proof documents continues
this mission to overcome low-level technical presentations of formal logic. The
framework of Isabelle/Pure + Isar is able to support all of logical syntax, axioms,
derived rules, and readable formal proof texts in a declarative manner.

As an illustration of the different conceptual levels of proof construction in
traditional Isabelle/Pure versus Isabelle/Isar, reconsider the very same FOL
example given in [Paulson, 2001a]. Before presenting any proof scripts, Paulson
sets out on a lengthy exposition of a number of internal features of the Isabelle
system, covering details about higher-order unification, composition of rules via
higher-order resolution (“back-chaining”), lifting of rules into logical contexts,
representation of proof states as rules, and basic concepts of the tactic language.
While these technical issues are still present in the Isar framework, they are
mostly covered “under the hood” — only the higher-level concepts of the Isar
proof language are exposed to recipients. Consequently, we have been able to
present our theory in a rather casual manner with both specifications and proof
texts. Recipients familiar with natural deduction techniques should be basically
able to read these proofs without much further explanations required. On the
other hand, additional insights into the formal proof language would certainly
be needed to write proof texts of this kind. Recall that Isar follows the principle
of “primacy of readability over writability” (§1.3).

Another notable issue is that of automated proof tools, especially as it is com-
pletely absent from the present example! While the Isabelle environment [Paul-
son and Nipkow, 1994] provides a number of powerful proof tools, such as the
Simplifier and Classical Reasoner, these have not been used here (new object-
logics would have to configure these tools explicitly in the first place).
Apart from some explicit proof method specifications of unfolding definitions
and applying basic rules, we have merely used a simple (default) proof tool
which supports single natural-deduction rule applications in an implicit manner
(§3.3.2): rules have been determined according to the theory declaration, which
includes a few hints such as “[intro]”, “[elim]”, “[dest]”. Less pure applications
(e.g. chapter 9 and chapter 10) certainly demand additional advanced tools (see
also §7.3).
As a general principle, Isar has been made independent of any particular notion
of automated reasoning (§1.3), while being able of any such tools that happen to
be available. This is in notable contrast to common believe on high-level proof

74 CHAPTER 4. Example: First-Order Logic

checking. Consequently, Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski,
1993] [Wiedijk, 1999] has certain notions of “obvious” inference steps hardwired
into the proof checker. Likewise, much of the discussion of the “Mizar mode for
HOL” [Harrison, 1996b] is dedicated to the issue of justification of proof steps
by the Meson proof procedure; substantial parts of the work on the “struc-
tured proof language” SPL [Zammit, 1999a] [Zammit, 1999b] covers first-order
automated reasoning.
In contrast, Isabelle/Isar demonstrates both that meaningful applications may
be conducted with plain higher-order resolution (in single steps) alone, and that
arbitrarily complex tools may be incorporated in a non-intrusive manner (see
also §7.3).

4.2.2 Natural deduction schemes

The present first-order theory provides a number of rules for the canonical treat-
ment of logical connectives according to natural deduction (cf. [Gentzen, 1935]).
Together with the appropriate declarations of their role as introductions and
eliminations (or destructions), this basic setup already enables us to write Isar
proof texts that directly correspond to these natural deduction schemes.
The resulting presentation illustrates the most basic techniques of writing Isar
proof texts. At the same time it also provides a nice textual explanation of how
natural deduction reasoning works in the first place.

The trivial introduction of > and elimination of ⊥:

have > ..

assume ⊥
hence A ..

Introduction of ¬, and its elimination (“proof by contradiction”):

have ¬ A

proof

assume A

thus ⊥ 〈proof 〉
qed

assume ¬ A and A

hence B ..

Canonical −→ introduction, and elimination (“modus ponens”):

have A −→ B

proof

assume A

show B 〈proof 〉

4.2. Discussion 75

qed

assume A −→ B and A

hence B ..

Introduction of ∧, its two projections, as well as simultaneous elimination:

have A ∧ B

proof

show A 〈proof 〉
show B 〈proof 〉

qed

assume A ∧ B

hence A ..

assume A ∧ B

hence B ..

assume A ∧ B

hence C

proof

assume A and B

thus C 〈proof 〉
qed

Elimination of ∨ (i.e. propositional case split), as well as its two introductions:

assume A ∨ B

hence C

proof

assume A

thus C 〈proof 〉
next

assume B

thus C 〈proof 〉
qed

assume A

hence A ∨ B ..

assume B

hence A ∨ B ..

The basic equality rules of reflexivity (introduction), substitution (elimination),
and the derived forms of transitivity and symmetry:

have x = x ..

76 CHAPTER 4. Example: First-Order Logic

assume x = y and P(x)

hence P(y) by (rule subst)

assume x = y and y = z

hence x = z by (rule trans)

assume x = y

hence y = x ..

Canonical introductions and eliminations of the ∀ and ∃ quantifiers:

have ∀ x . P(x)

proof

fix x

show P(x) 〈proof 〉
qed

assume ∀ x . P(x)

hence P(a) ..

assume P(a)

hence ∃ x . P(x) ..

assume ∃ x . P(x)

hence C

proof

fix x assume P(x)

thus C 〈proof 〉
qed

While the above proof schemes follow common expositions of natural deduc-
tion rules quite closely (e.g. [Thompson, 1991]), in actual applications they are
not always as “natural” as advertised. In particular, the equality rules and ∃
elimination are typical candidates for further refinements.
An important point of the Isar language concept is that the course of reasoning
may be rearranged in numerous ways, as well will see in further examples later
on. Furthermore, Isar supports a number of derived concepts that address fur-
ther inconveniences of pure natural deduction encountered in realistic proofs.
These advanced techniques include generalized elimination schemes (see chap-
ter 5), and proper support for equational reasoning via calculations (chapter 6).

4.2.3 Declarative versus operational theorem proving

We shall now investigate a few basic issues of “declarative” proof texts versus
“operational” proof scripts, as far as plain natural deduction is concerned.

4.2. Discussion 77

The fundamental aspects of proof construction in a natural deduction framework
like Isabelle/Pure are that of statements (propositions), rules (probably with
instantiations), and composition of partial results (determining the overall proof
structure). Roughly speaking, declarative proofs prefer to state propositions
explicitly and provide rich text structure, rather than specify rules of inference;
on the other hand, operational scripts merely give rules (or other proof method
specifications). From this perspective, declarative versus operational proofs
would be exactly dual to each other, by emphasizing complementary aspects of
formal proofs.
Nevertheless, this characterization turns out to be slightly oversimplifying. In
practice, Isar proofs may be declarative or operational to rather different de-
grees. Actual readability of the result depends on many factors, including the
intention of the writer addressing a certain audience of readers. This may de-
mand to highlight either “declarative” or “operational” aspects of the reasoning,
depending on the present context. Just consider the example of large induction
proofs (§5.4) involving inductively defined sets (§7.2.1). Here it is usually prefer-
able to suppress explicit propositions from the text, but give a quasi-operational
specification of the induction scheme (via a proof method) plus some structure
on the emerging cases (see chapter 10 for typical examples). Thus we may gain
readability by shifting the focus from explicit propositions over to proof methods
and very abstract structure.

For the moment, we stay within plain natural deduction and illustrate the most
basic declarative and operational techniques of Isar proof construction. Several
variations for the propositional fact A ∧ B −→ B ∧ A will be discussed.

Proof texts

Our first version follows more or less the standard idiom of plain natural deduc-
tion in Isabelle/Isar, with mixed forward and backward reasoning, cf. the basic
introduction and elimination schemes given in §4.2.2.

lemma A ∧ B −→ B ∧ A

proof

assume A ∧ B

thus B ∧ A

proof

assume B and A

thus ?thesis ..

qed

qed

Apparently, we have been able to complete the proof without ever naming rules
explicitly, or even just local facts. The deeper reason for this is twofold. First, we
have explicitly stated assumptions and intermediate claims by giving an actual
proposition as a term. This may sound like a rather obvious thing to do, but in

78 CHAPTER 4. Example: First-Order Logic

the tactical theorem proving tradition one would attempt to suppress explicit
terms as much as possible. Second, our proof has been quite detailed about its
overall structure, although this information is given quite implicitly, by nesting
of sub-proofs, and performing suitable “gestures” to indicate what to do next.
In particular, we have indicated forward chaining from existing facts as opposed
to mere backward reasoning where appropriate (via then as involved in thus).
In order to see better how this kind of implicit processing of basic inferences
works out in detail, we shall now expand the above proof further, until sufficient
operational detail is exhibited. First of all, a few basic abbreviations have been
used routinely; by expanding these we arrive at a slightly more explicit scheme.

lemma A ∧ B −→ B ∧ A

proof (rule)

assume A ∧ B

then show B ∧ A

proof (rule)

assume B and A

then show ?thesis by (rule)

qed

qed

By default, the rule method figures out the actual rule to be used implicitly (cf.
§3.3.2), which is usually quite easy based on the explicit goal statement given,
together with the indication for forward chaining of facts (using then). The
rules determined here are named explicitly in the next version.

lemma A ∧ B −→ B ∧ A

proof (rule impI) — canonical introduction of −→
assume A ∧ B

then show B ∧ A — canonical elimination of ∧
proof (rule conjE)

assume B and A

then show ?thesis by (rule conjI) — canonical introduction of ∧
qed

qed

We see that canonical introductions may be simply performed by stating a goal
an performing a single default proof step; likewise, canonical elimination works
by indicating a fact for forward chaining, as before. As we may see in the
third step above, forward chaining may result in introduction steps as well, if
the proof is forced to be finished afterwards; here introductions are tried after
all eliminations (cf. §3.3.2), so this scheme would still work if facts B and A
provided separate logical structure, which may have become eliminated as well.
The subsequent version is even more obfuscated, as we include explicit instan-
tiations of rules as well. Certainly, we would normally leave it to the builtin
unification of Isabelle [Paulson and Nipkow, 1994] to work out such syntactic
details.

4.2. Discussion 79

lemma A ∧ B −→ B ∧ A

proof (rule impI [of A ∧ B B ∧ A])

assume A ∧ B

then show B ∧ A

proof (rule conjE [of A B B ∧ A])

assume B and A

then show ?thesis by (rule conjI [of B A])

qed

qed

From the highly redundant proof texts above we also see that that Isabelle/Isar
proof checking actually involves a twofold book-keeping process, with explicit
statements and structure on the one side, and operational steps on the other
side. While, the common Isar idiom usually prefers the former (declarative)
parts over the latter (operational) ones, we may as well choose otherwise — the
Isar framework is sufficiently flexible to support rather “improper” uses of the
language. This liberal attitude certainly demands some taste and distinction of
the user, lest the system be abused in uncouth manners.

Proof scripts

The next version follows a purely operational style of tactical proving, by ex-
pressing the main reasoning steps via a string of proof methods alone; only the
main statement is left as an explicit proposition.

lemma A ∧ B −→ B ∧ A

by (rule impI , erule conjE , rule conjI)

Apparently, this way of emulating traditional tactic scripts stretches the Isar
method language (cf. §3.3.2) a bit far, using sequential composition of methods
to express the whole course of reasoning by a single command. Even worse, that
form would be rather impractical for interactive development and debugging,
since the by command succeeds (or rather fails) in a single atomic transition of
the Isar/VM interpreter (cf. §3.2.3 and §3.3.3).
Proof scripts are more appropriately represented via “improper” proof com-
mands apply and done (cf. §3.2.1), which support step-by-step goal refine-
ments and do not refer to any implicit Isar reasoning steps (such as the implicit
finishing by assumption, cf. §3.2.3).

lemma A ∧ B −→ B ∧ A

apply (rule impI)

apply (erule conjE)

apply (rule conjI)

apply assumption

apply assumption

done

80 CHAPTER 4. Example: First-Order Logic

While the last three commands above could be expressed as an immediate proof
“.” as well, unstructured scripts better use the null proof terminator done and
name any required assumption steps explicitly — this improves robustness and
maintainability.

We see that operational scripts as above mostly consist of method specifications;
explicit propositions only occur in the very beginning, structural hints are very
limited (e.g. erule used instead plain rule basically amounts to a limited form of
the forward chaining gesture as indicated by then in proper Isar proof texts).
Furthermore, our proof scripts do not provide any immediate information about
the inherent tree structure of proof problems emerging by new subgoals as we
proceed. While it is customary to indent script commands accordingly, this
merely counts as a “comment” that is not processed formally. Note that this
particular problem is specific to Isabelle [Paulson and Nipkow, 1994], being the
cost of a very flexible approach to internal goal addressing. Proof scripts in some
other systems reflect the subgoal structure directly in the text, e.g. Coq [Barras
et al., 1999] and HOL [Gordon and Melham, 1993] provide separate combinators
to fork a script into several sub-scripts, in order to address the corresponding
goals separately.
In proper Isar proof texts on the other hand, we may benefit from Isabelle’s
flexible scope on internal goals, without suffering from its potential problems
— the structure of Isar sub-proofs is already determined by explicit local state-
ments in the text (have, show etc.). A common pattern is to establish such
local claims directly by an atomic proof of “by m1 m2”, involving a tiny script
of two methods only. Here the initial method m1 (used with any chained facts)
splits the original goal into a number of subgoals, and the terminal method m2

solves any number of these, probably leaving a few trivial ones to be finished
implicitly by assumption at the very end of this local proof.

Another notable issue is that of bringing explicit propositions back into proof
scripts. Existing systems such as Isabelle [Paulson and Nipkow, 1994] and HOL
[Gordon and Melham, 1993] do provide a number of tactics that take term spec-
ifications as additional arguments, e.g. subgoal_tac to simulate a local claim
within the present goal state (resembling Isar’s have to some extent). Neverthe-
less, such tactical elements are only rarely used in tactical proving (cf. the dis-
cussion in [Simons, 1996]). Experts of tactical proving occasionally even include
comments with excuses about mentioning intermediate propositions during the
course of reasoning!
As has been shown by longterm experience with tactical proof scripts, there
are indeed some good reason for avoiding explicit quoting of terms: otherwise
scripts may become “unstable” and hard to maintain afterwards. Seen from
the Isar perspective, the problem is that of undisciplined intermixing of static
and dynamic parts of proof states (cf. context versus goal in §3.2.3). Explicit
propositions in scripts belong to the static text, but somehow need to refer to
the dynamic goal state emerging from several tactics applied so far. Due to the
very nature of common tactics, that dynamic result is very hard to predict, and

4.2. Discussion 81

easily mutates under minor changes of theory definitions and declarations. Thus
parts of a slightly obscure dynamic state would intrude the static text, which
may be both quite surprising to the reader and easily break down existing proof
scripts later on.
Unfortunately, in realistic applications even the most tuned operational proof
scripts do have to mention explicit terms occasionally, such as in explicit in-
stantiation of non-trivial rules like ∀ elimination, ∃ introduction, or induction
schemes (cf. res_inst_tac in classic Isabelle [Paulson, 2001b] and rule-tac in
the script emulation of Isabelle/Isar [Wenzel, 2001a]). Thus dynamically gener-
ated local parameters with accidental names such as x xa xb easily intrude proof
scripts in an uncouth manner. In principle, effects like this would better have
been accommodated by more careful usage of tactics (e.g. including rename-tac
to fix parameter names). On the other hand, this kind of odd behavior of proof
scripts is generally accepted as a matter of fact in tactical theorem proving.

Apart from using propositions as part of the control script, one may as well
consider to restrict them to documentation purposes of the dynamic evolution
of the internal goal state, in order to gain some accessibility of the result to
casual readers. [Cohn, 1995] proposes this kind of support of “proof accounts”
for HOL [Gordon and Melham, 1993]. That system includes a separate copy of
the basic collection of HOL tactics to produce suitable output of current changes
of the goal state. Any approach like this is faced with the problem of reducing
the proof state information to relevant bits. The raw goal state at arbitrary
intermediate positions of typical proof scripts easily becomes quite large (up to
several printed pages in extreme cases), but only a few local differences to the
previous steps represent the actual progress made.
Subsequently, we give a trace of the dynamic goal states encountered during our
present example proof script. Even in this rather trivial case the raw output is
already cluttered by much irrelevant information.

lemma A ∧ B −→ B ∧ A

— subgoals: 1. A ∧ B −→ B ∧ A

apply (rule impI)

— subgoals: 1. A ∧ B =⇒ B ∧ A

apply (erule conjE)

— subgoals: 1. A =⇒ B =⇒ B ∧ A

apply (rule conjI)

— subgoals: 1. A =⇒ B =⇒ B 2. A =⇒ B =⇒ A

apply assumption

— subgoals: 1. A =⇒ B =⇒ A

apply assumption

— subgoals: No subgoals!

done

One of the key observations of readable Isar proof descriptions is that the general
course of reasoning is more adequately represented as a static text, without ever
referring to dynamic goal information directly (proper Isar elements do not allow

82 CHAPTER 4. Example: First-Order Logic

this in the first place). Thus we are enabled to replace an internal dynamic trace
of goals (i.e. a long list of large states) by a single static text of reasonable size.
By this general approach we may expect readable proof representations that
scale up to large applications as well.

Another lesson learned here is that the Isar framework is very liberal, allowing
many ways to conduct formal reasoning. For those who know how to use the
system properly, this freedom provides powerful means for interactive devel-
opment and experimentation, as well as unusual presentations of final results.
Nevertheless, Isabelle/Isar texts may be written in almost arbitrarily bad style.
The Isar design deliberately suffers some degree of potential abuse as a price to
be paid for freedom; recall the principle of “abusus non tollit usus” (§1.3).

4.2.4 Further expressions of natural deduction

We now change the perspective from Isabelle/Isar to a few other systems and
notations for plain natural deduction. By comparing different expressions of
natural deduction with corresponding Isar proof texts we gain further under-
standing of both those alternative systems as well as Isar itself.
After the original formulation of [Gentzen, 1935], plenty of alternative systems
and notations have been devised to represent natural deduction proofs ade-
quately. Such efforts include various forms of diagrams with lines or boxes to
lay out trees of inferences (cf. the basic formats encountered in [Jape], for ex-
ample), or even more advanced graphs and pictures rendered as proposed in
[Barwise and Etchemendy, 1995] [Barwise and Etchemendy, 1998].
Several more recent systems (ProveEasy [Burstall, 1998], Mizar-Light [Wiedijk,
2000], and Tutch [Abel et al., 2001]) have rediscovered the value of plain textual
representations as a primary format for proofs. We argue that complex graphical
representations are limited to small examples of formal logic or very special
applications only. Diagrammatic presentations are inherently restricted in size
and structural complexity by their physical appearance. It is quite hard to
oversee large pictures, and even unclear where to start “reading” of a non-linear
representation in the first place. Our claim is backed by the observation that
non-textual proof formats are rarely encountered in large applications of formal
logic. Also note that traditional mathematics works with linear texts most of
the time as well (with the notable exception of highly abstract diagrammatic
proofs encountered in category theory, for example).

Plain lambda-calculus

As far as primitive proof objects are concerned, natural deduction is certainly
most adequately represented by typed λ-terms (cf. §2.2). Recent work on the
Isabelle inference kernel [Berghofer and Nipkow, 2000] even provides a con-
crete programming interface based on this representation, supporting tools that

4.2. Discussion 83

need to externalize primitive proofs from the core system (e.g. external checkers,
storage facilities for primitive theories and theorems, facilities for proof-carrying
code). Nevertheless, the internal representation of primitive proofs is indepen-
dent of the issue of readable primary proof formats in Isar (cf. §1.4).

In Coq [Barras et al., 1999] the notion of internal proof term has been tied to
λ-calculus from the very beginning. The user experience of interactive develop-
ment of goal-oriented proof scripts does not directly expose these foundations
under normal circumstances, as is illustrated by the following example.

Goal (A, B: Prop)(A /\ B) -> (B /\ A).

Intros a b ab.

Induction ab.

Split.

Assumption.

Assumption.

Save example1.

Nevertheless, Coq admits users to construct proofs directly by giving λ-terms as
well. These may be either provided as definitions of proof terms, or immediately
included in proof scripts; the latter feature is typically used by expert users to
perform small forward inferences in a casual manner.

Definition example2 := [A, B: Prop; ab: A /\ B]

(and_ind A B B /\ A [a: A; b: B](conj B A b a) ab).

Goal (A, B: Prop) A /\ B -> B /\ A.

Exact [A, B: Prop; ab: A /\ B]

(and_ind A B B /\ A [a: A; b: B](conj B A b a) ab).

Save example3.

Ad-hoc reasoning like this may be simulated in Isabelle/Isar only to a limited
extent, using theorem expressions with basic attributes like OF (composition)
or of (instantiation) (cf. §3.3.2). While composition covers plain application as
well there is no standard attribute for abstraction; below we use proper Isar
proof context commands instead.

lemma A ∧ B −→ B ∧ A

proof

assume ab: A ∧ B

show B ∧ A

proof (rule conjE [OF ab])

assume a: A

assume b: B

show ?thesis

by (rule conjI [OF b a])

qed

qed

84 CHAPTER 4. Example: First-Order Logic

On the other hand, the very aim of the Isar proof language is to replace the
primitive notion of λ-terms by a primary proof format that is more accessible
to readers. Theorem expressions with attributes as encountered above are only
rarely used in proper Isar proof texts at all.

The Agda system [Agda] [Coquand and Coquand, 1999] is positioned as a re-
formed version of Coq, being based on a different version of typed λ-calculus
internally, but with a similar system philosophy. The default user experience of
Agda is quite different from Coq, exposing its λ-calculus foundations directly
to the primary proof presentation format, which resembles an explicitly typed
higher-order functional programming language. Consider the following Agda
version of our running example of A ∧ B −→ B ∧ A.

example (A::Prop)(B::Prop) :: Implies (And A B) (And B A)

= ImpliesIntro (And A B) (And B A)

(\(ab::And A B) ->

AndIntro B A (AndElim2 A B B ab (\(b::B) -> b))

(AndElim1 A B A ab (\(a::A) -> a)))

Alfa is a separate graphical proof editor for Agda, which has been recently
enhanced to support natural language input and output [Hallgren and Ranta,
2000] as well. Using the Alfa user-interface, λ-terms may be drawn in two-
dimensional diagrams according a well-established format of natural deduction
proof trees (cf. the textbook exposition of [Thompson, 1991]). A typical proof
presentation of Alfa looks as follows (it is important to note that the formal
structure of the underlying Agda proof is quite different from the previous one).

λab →
A ∧ B ab λb →

B b

B
∧E2

A ∧ B ab λa →
A

a

A
∧E1

B ∧ A ∧I

A ∧ B −→ B ∧ A −→I

The Agda/Alfa environment certainly represents the basic paradigm of natural
deduction as typed λ-calculus very faithfully. On the other hand, its general
approach has to face the standard issues of scaling up to larger applications:
how to incorporate advanced proof tools into its functional programming pre-
sentation of formal proofs (Agda), and how to draw large inference trees (Alfa).

ProveEasy versus bidirectional reasoning

ProveEasy [Burstall, 1998] is a small teaching tools for interactive composition
of linear textual representations of plain natural deduction proofs. The system
is generic in the sense that new rules may be added at any time (by writing func-
tions in the Tcl programming language, involving regular expression matching).

4.2. Discussion 85

While the basic concepts of ProveEasy are inspired by the tradition of λ-calculus
and type theory, its primary format observes the most basic principle of “declar-
ative” proof texts (cf. §4.2.3) by including intermediate propositions explicitly
in the text (rules and some instantiations have to be given as well).
Here is a typical proof text produced by ProveEasy. While this form may be
entered directly by hand, it is usually composed interactively by pointing at
appropriate rules to be applied in the next step.

1 . Show {a & b} -> {b & a} by showImp

11.1 . . Given a & b

11 . . Show b & a by givenAnd 11.1

111.1 . . . Given a

111.2 . . . Given b

111 . . . Show b & a by showAnd

1111 Show b by given

1112 Show a by given

QED

We may easily reproduce this format in Isabelle/Isar as follows.

lemma A ∧ B −→ B ∧ A

proof (rule impI)

assume ab: A ∧ B

show B ∧ A

proof (rule conjE [OF ab])

assume A

assume B

show B ∧ A

proof (rule conjI)

show B by assumption

show A by assumption

qed

qed

qed

The natural deduction format of ProveEasy is restricted to pure backwards rea-
soning, as represented by the above slightly formalistic use of plain assume and
show without ever using forward-chaining (via then). Furthermore, ProveEasy
does not admit auxiliary facts to be established separately (cf. have in Isar),
this has to be achieved indirectly by having assumptions emerge just in the right
way to be used later on. Assumptions are indeed the only facts that may be
referenced, as may be seen from the format of labels with a dot given in the
ProveEasy text above. In contrast, Isar allows any local result to be used later
on, even those established by show (this results in non-linear reasoning with
DAG-shaped internal structure, cf. the Knaster-Tarski example in §1.5).
ProveEasy follows a systematic scheme of complete labeling of intermediate
lines and facts, essentially path specifications of the underlying tree structure.

86 CHAPTER 4. Example: First-Order Logic

[Lamport, 1994] proposes a similar format of names, which includes some addi-
tional notational devices to address the typical proliferation of redundant labels
emerging from this technique.
We argue that such complete path specifiers are not quite appropriate in realis-
tic applications. First of all, the tree structure of common proof texts is mostly
linear anyway, with only a few forks (typically caused by case analysis or induc-
tion). This is the deeper reason why labels in the above ProveEasy text consist
of many 1’s, but very few 2’s. As may observed from the accompanied Isar
version, only very few such names are actually used later on. The demand for
labeled facts may be reduced even further by proper use of forward-chaining,
instead of insisting on strict backward reasoning. With this basic tuning we
already arrive at a much smoother Isar version (cf. §4.2.3).

lemma A ∧ B −→ B ∧ A

proof (rule impI)

assume A ∧ B

then show B ∧ A

proof (rule conjE)

assume B and A

then show B ∧ A

by (rule conjI)

qed

qed

Here the primitive composition [OF ab] has already been covered by (rule conjE)
used with the chained fact of ` A ∧ B ; likewise have we have incorporated the
assumption steps into (rule conjI) as well (after adjusting the order of B and
A appropriately).
As already seen in §4.2.3, the actual rule specifications happen to be completely
redundant, since the explicit propositions and structural information of the text
already provide sufficient clues to determine these behind the scenes.

lemma A ∧ B −→ B ∧ A

proof

assume A ∧ B

then show B ∧ A

proof

assume B and A

then show B ∧ A ..

qed

qed

We see that immediate forward chaining of existing facts is an important ingre-
dient to streamline natural deduction reasoning, reducing the formal noise of
labeled facts.
Here are some further variants that illustrate Isar’s liberal approach to mixed
forward and backward reasoning; depending on the structural details of the

4.2. Discussion 87

proof we may be occasionally forced to name facts or standard rules explicitly,
though.

lemma A ∧ B −→ B ∧ A

proof

assume A ∧ B

show B ∧ A

proof

show B by (rule conjD2)

show A by (rule conjD1)

qed

qed

lemma A ∧ B −→ B ∧ A

proof

assume ab: A ∧ B

show B ∧ A

proof

from ab show B ..

from ab show A ..

qed

qed

lemma A ∧ B −→ B ∧ A

proof

assume A ∧ B

thus B ∧ A

proof

assume A and B

show ?thesis ..

qed

qed

lemma A ∧ B −→ B ∧ A

proof

assume ab: A ∧ B

from ab have b: B ..

from ab have a: A ..

from b a show B ∧ A ..

qed

As may be observed in the last version above, an extremely forward style of
reasoning tends to demand many explicitly named local facts; on the other
hand standard rules of inference normally do not need to be named, as each line
needs to be closed separately, leaving little choice for the rules to be applied.
Nevertheless, name references may be easily reduced via the most basic derived

88 CHAPTER 4. Example: First-Order Logic

Isar commands involving then (cf. §3.3.3); with is particularly useful in such
situations, as it uses the current facts together with earlier ones. Here is a tuned
version of that proof.

lemma A ∧ B −→ B ∧ A

proof

assume ab: A ∧ B

hence b: B ..

from ab have A ..

with b show B ∧ A ..

qed

So just by a few “peephole optimizations” we have been able to reduce the total
number of name occurrences (both defined and referenced) from 7 to 4; this is
the typical rate achieved in real applications as well. Isar also provides further
infrastructure beyond basic natural deduction (see chapter 6) to reduce the need
for labeled facts even more in large-scale applications (see §6.4.3).

Incidently, the strictly backward natural deduction presentation of ProveEasy
[Burstall, 1998] is complemented by the mostly dual one of structured forward
reasoning in [Hofstadter, 1979]. Using the latter format, our present example
looks like this (cf. [Hofstadter, 1979, chapter VII, p. 184]).

[push
<A ∧ B> premise
A separation
B separation
<B ∧ A> joining

] pop
<A ∧ B> ⊃ <B ∧ A> fantasy rule

Hofstadter calls the “[. . .]” form “phantasy mode”, where facts may be locally
invented to be discharged later on. The (formal) proof format of [Tutch] [Abel
et al., 2001] happens to be almost the same for this example.

proof andComm: A & B => B & A =

begin

[A & B; %assumption

A;

B;

B & A]; %conclusion

A & B => B & A

end;

This kind of forward reasoning may be easily reproduced in Isabelle/Isar via raw
blocks (see also §5.2), although we need to name some facts and rules explicitly.

{
assume A ∧ B

4.2. Discussion 89

have a: A by (rule conjD1)

have b: B by (rule conjD2)

have B ∧ A by (rule conjI [OF b a])

}
hence A ∧ B −→ B ∧ A ..

We see that Isabelle/Isar is able to cover the whole range from purely back-
wards to purely forwards reasoning from one end to the other, including any
conceivable intermediate arrangement as well.

Mizar

Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999] has
pioneered formal proof construction according to general guidelines of estab-
lished mathematical practice. The system is tied to classical first-order logic,
with a formulation of typed set-theory for actual applications. Consequently,
both its internal foundations as well as its primary user experience are farther
removed from the pure intuitionistic look and feel of the systems we have con-
sidered so far, including the Isabelle/Pure framework of Isar (§2.2).
Mizar provides two main mechanisms of formal proof checking (as implemented
in its “verifier”): proof outlining with step-wise refinement according to basic
first-order principles, and terminal solving of left-over problems by a builtin
notion of “obviousness” [Rudnicki, 1987]. Despite being inherently classical,
the outlining mechanisms of Mizar may be used for reasonable representations
of plain natural deduction proofs as well.
Here is an attempt to emulate our preferred version of the running example of
A ∧ B −→ B ∧ A in Mizar. As Mizar takes its first-order foundations very
seriously, we have to simulate propositional variables via set membership of
unspecified individuals.

reserve x, y, A, B for set;

theorem x ∈ A & x ∈ B implies x ∈ B & x ∈ A

proof

assume a: x ∈ A;

assume x ∈ B;

hence x ∈ B;

thus x ∈ A by a;

end;

It is important to note that the above order of assumptions and conclusions is
fixed, thus we really do need the explicit naming of fact a, in order to be able
to use it over a distance. Only the second assumption may get used directly by
“linking”, using hence instead of thus in the subsequent step.
Isar generally offers more flexibility in arranging the key elements of a proof
body. In particular, assumptions may be permuted and repeated in an arbi-

90 CHAPTER 4. Example: First-Order Logic

trary manner; conclusions may be rearranged as well. Thus one may easily
arrange the text such that corresponding facts are placed next to each other, in
order to clarify the proof structure and enable forward chaining to reduce the
need for named references. Certainly, assumptions have to be always introduced
before the corresponding conclusions. In particular, we may not just state an
assumptions where it happens to get used, nested within a proper sub-proof of
the corresponding conclusion; this restriction enforces static scoping of assump-
tions (which correspond to λ-abstractions), and compositional proof processing
(i.e. sub-proofs may never affect the meaning of the enclosing text).

It is not that easy to represent Mizar proofs directly within the Isar framework,
due to fundamental semantical differences of how proof outlines are processed.
First of all, we observe that Mizar’s proof and end do not have any separate
meaning, but only serve as delimiters of the proof body. Furthermore, by refers
to the builtin automatic prover used together with a number of additional facts
(Mizar’s then primitive, which is technically encountered in hence as well, would
just include the most recent fact into that specification). Also note that Mizar’s
thus actually corresponds to Isar’s show, while Isar’s thus would be hence in
Mizar.1 See also [Wiedijk, 2000] for a more detailed attempt to relate the basic
Mizar and Isar language elements to each other, based on a simplified model of
either system.

Apart from such superficial differences, the basic model of processing proof out-
lines in Mizar is fundamentally different from the way that Isar builds up local
contexts within a proof body and solves some goals eventually. In case that
there is a main goal at the head of the proof (as encountered here), Mizar’s op-
eration may be understood as a structured walk through the remaining problem,
as it is transformed step-by-step via a number of outline commands: assume,
thus, hence, and further ones corresponding to basic first-order connectives
and quantifiers, such as let, take, consider, given [Trybulec, 1993] (see also
§5.5.1). A few logical connectives are treated implicitly, such as implication and
conjunction.
Mizar provides a number of additional concepts to represent common patterns of
forward reasoning encountered in mathematics, most notably iterated equality
reasoning (see also §6.4.1), as well as “diffuse” reasoning without a goal state-
ment at the head position (using “now . . . end” or “hereby . . . end”). Taking
these elements away from Mizar, one would basically arrive at a system that is
very close to the goal oriented paradigm of tactical proving, only that the set of
“tactics” has been chosen more carefully with readability in mind. This basic
observation has been a starting point of the “Mizar mode for HOL” [Harrison,
1996b], and has been worked out further in “Mizar-Light” [Wiedijk, 2001b].
This quasi-operational style of stepwise transformations of a single problem at
hand cannot be easily reproduced in Isar, which is slightly more “declarative”

1This particular terminology of Mizar is not ideal for linguistic reasons: while hence would
be technically the same as then thus, the latter form had to be suppressed due to its odd
reading as quasi-natural language.

4.2. Discussion 91

in the sense that arbitrary goal refinements may only take place in the very
first proof step, or when performing qed. Within an Isar proof body there is
no way to work on pending goals directly (there is not even a fixed focus on
a particular one). Results that are meant to refine enclosing goals have to be
built up strictly declaratively by giving suitable assume and show statements
in the proof body.

Incidently, the treatment of Mizar’s thesis versus Isar’s ?thesis illustrates the
key difference of structured proof processing quite nicely. In Mizar, thesis is a
special placeholder for the remaining part of the problem one is currently work-
ing at in the present section of a proof body; consequently thesis is dynamically
updated after each main step. A trace of the course of value of thesis in the
above Mizar example may be given as follows.

theorem x ∈ A & x ∈ B implies x ∈ B & x ∈ A

proof — thesis = x ∈ A & x ∈ B implies x ∈ B & x ∈ A

assume a: x ∈ A; — thesis = x ∈ B implies x ∈ B & x ∈ A

assume x ∈ B; — thesis = x ∈ B & x ∈ A

hence x ∈ B; — thesis = x ∈ A

thus x ∈ A by a; — thesis = -
end;

In contrast, Isar’s ?thesis is just another term abbreviation that happens to be
bound automatically whenever a new claim is stated in the text (cf. §3.2.3).
Thus it always refers statically to the head of the present proof. Once that the
initial goal has been refined in a non-monotonic manner, ?thesis becomes useless
for the current piece of proof text. Updating ?thesis dynamically as in Mizar
would quickly lead to unreadable proofs, as initial goal refinements may involve
just any Isar proof method. On the other hand, Mizar’s dynamic behavior
does not cause any real problems in practice, since the basic transformations
available here are limited to a few principles from classical first-order logic that
are relatively easy to oversee.

We finally give a try at emulating the present Mizar example in Isar. Recalling
one of the more or less canonical Isar versions already encountered before, we
see that we require additional nesting of sub-proofs, in order to be able to enter
the logical structure of the problem.

lemma A ∧ B −→ B ∧ A

proof

assume A ∧ B

thus B ∧ A

proof

assume B and A

thus ?thesis ..

qed

qed

Mizar usually requires less structural overhead to dig into first-order proof prob-
lems. On the other hand, this advantage is strictly limited to pure logic. In

92 CHAPTER 4. Example: First-Order Logic

contrast, the explicit goal refinements in Isar (via initial or terminal method
specifications) may be just anything, ranging from domain-specific introduction
and elimination rules declared by the user, to arbitrary automated proof tools.
In fact, our theory of intuitionistic first-order logic has been declared as such a
“domain-specific” application in the first place.

The gain of flexibility of the Isar framework pays off even more in “realistic”
applications of formal logic (e.g. chapter 8, chapter 9, chapter 10). Certainly,
concrete applications demand some further infrastructure beyond plain natural
deduction; this is easy to achieve on top of the existing Isar framework (see also
chapter 5 and chapter 6).
Using advanced Isar techniques to be introduced later on (see §5.3) we may
easily turn the tide again in favor of Isar, even for this primitive example.

lemma A ∧ B −→ B ∧ A
proof

assume A ∧ B
then obtain B and A ..
thus B ∧ A ..

qed

Part II

Techniques

93

Chapter 5

Advanced natural deduction

We explore a broad range of “advanced” natural deduction techniques in Isar.
First of all, this includes a systematic exposition of the capabilities of the exist-
ing language framework introduced so far, pointing out its practical virtues as
opposed to pure λ-calculus notions of formal proof. Furthermore we introduce
additional derived concepts, notably generalized elimination as a first-class proof
context element, and specific support for common schemes of proof by cases and
induction. Any of these techniques turn out as indispensable means to support
scalable applications.

5.1 Introduction

Natural deduction has been introduced by [Gentzen, 1935] as a formalism to
represent the way that mathematicians perform proof in principle. Modern
expositions usually explain natural deduction in terms of typed λ-calculus, e.g.
see [Thompson, 1991] or [Barendregt and Geuvers, 2001]. This provides a viable
formal basis for both theoretical studies and concrete implementations, but it
does not immediately offer means for human-readable presentations of formal
proof texts. Existing mathematical practice does not quite resemble the pure
λ-calculus style of reasoning.
We have already explored some aspects of textual representation of basic nat-
ural deduction elements earlier (chapter 4), considering both the Isar view and
several other approaches. The Isar proof texts encountered there could be re-
lated to the most basic concepts of λ-calculus, namely abstraction for context
elements fix and assume, and application (or general composition) for show
and rule applications involved in proof and qed steps. A few derived elements
of λ-calculus have already been encountered as well, notably various versions of
let-expressions covered by have, note, and let. A modified view on application
has been indicated by then.

95

96 CHAPTER 5. Advanced natural deduction

Subsequently, we shall provide a systematic exposition of further elements of
natural deduction available in Isar. All of these may be expressed on top of
the existing language framework (chapter 3), and would correspond to equally
“redundant” additions to the plain λ-calculus view of reasoning. Nevertheless,
the resulting Isar proof patterns turn out to be indispensable prerequisites for
advanced applications (e.g. chapter 8, chapter 9, chapter 10). Even very sim-
ple applications like the Knaster-Tarski Theorem given in §1.5 already benefit
greatly from such derived elements.
The general lesson to be learned here is that the subtle task of composing human-
readable proof texts needs to be accommodated by a considerable diversity of
the formal language. Despite our general aim to keep the very core of the Isar
language small, its highly compositional nature results in a rich environment
of meaningful proof patterns. This principle holds both for natural deduction
proper to be discussed here, as well as its light-weight cousin of “calculational
reasoning” (see chapter 6).

The following particular techniques will be explored in the present exposition
of advanced natural deduction.

1. Various basic techniques that are already inherently present in the core
proof language (chapter 3), but have not been included in the discussion
of basic natural deduction so far (chapter 4).

Speaking again in terms of λ-calculus, this includes “non-standard” con-
cepts like general (cascaded) context elements (see §5.2.1), incremental let-
expressions (see §5.2.2), modified application and composition (see §5.2.3),
stand-alone parentheses (see §5.2.4), and internalized proof texts in the
form of meta-level rule statements (see §5.2.5).

2. Support for generalized eliminations via the derived obtain element (see
§5.3). This basically amounts to existential quantification at the level of
Isar proof texts, or “conservative extensions” of local proof contexts.

Instead of having context elements fix and assume emerge implicitly as
the result of previous backward reasoning, obtain allows to prove that
parameters and assumptions may be introduced at a certain point (in-
dependent of any goals). This principle admits a large number of useful
patterns, with considerable elimination of formal noise.

3. Specific infrastructure for proof by cases and induction (see §5.4) that
scales up well in practice.

Depending only on a few additional proof methods and attributes, the
existing case command (§3.3.1) is turned into a viable tool to introduce
large context elements into proof texts succinctly, corresponding to canon-
ical rules of inductive sets or types.

Interestingly, the “advanced” issues covered here will mostly revolve around
static proof contexts rather than dynamic goal configurations. This observation

5.2. Basic techniques 97

marks a distinctive difference of structured proof techniques versus existing
approaches of goal-oriented tactical theorem proving, like in traditional Isabelle
[Paulson and Nipkow, 1994], the HOL system [Gordon and Melham, 1993], or
Coq [Barras et al., 1999]). The calculational reasoning techniques of chapter 6
will drive this view to its ultimate consequence, arriving at a proof style that is
essentially devoid of goals altogether.

5.2 Basic techniques

5.2.1 General context elements

The Isar framework provides the two fundamental context primitives fix and
assm (cf. §3.2.1). Speaking in terms of λ-calculus both essentially correspond
to abstraction: fix abstracts over terms (with syntactic types) and assm over
facts (or rather internal proof terms). A proof text involving “fix ~x assm ~H”
corresponds directly to an internal context of a proposition presented in HHF
normal form

∧
~x. ~H =⇒ H (cf. §2.4.1).

As we shall elaborate below, canonical equivalence transformations of such for-
mula may be performed on Isar proof texts as well, e.g. α-conversion of pa-
rameters, permuting and repeating premises, and commuting parameters with
premises (according to the law ` (P =⇒ (

∧
x . Q x)) ≡ (

∧
x . P =⇒ Q x)).

The assm (§3.2.1) primitive is not directly available in Isar proof texts, but is
intended to implement user-level elements accordingly, such as assume, pre-
sume, def , and case (cf. §3.3.1). Later on we will also introduce the derived
obtain element (see §5.3), and cover advanced uses of case (see §5.4). In con-
trast, raw fix is slightly more degenerate as an individual concept, since it does
not involve any special treatment at discharge time. On the other hand, derived
context elements may refer to fix and assm simultaneously, like def or obtain.

Fixed variables

Variables introduced via fix refer to local objects that are purely syntactic: when
exporting results such elements may be generalized according to the canonical∧

introduction rule (cf. §2.2). No additional hypotheses wrt. typing of variables
are imposed here, because the underlying framework inherently assumes types
are always inhabited (see also §8.6.1 for the analogous situation in the HOL
object-logic). Non-dependent expressions of

∧
may be immediately simplified

according to the law ` (
∧

x . P) ≡ P.

Portions of Isar proof texts involving fix are α-convertible, just like the cor-
responding

∧
binder expressions of the underlying logical framework (§2.2).

Consider the following trivial example.

98 CHAPTER 5. Advanced natural deduction

have ∀ x . P x

proof

fix x

show P x 〈proof 〉
qed

have ∀ x . P x

proof

fix u

show P u 〈proof 〉
qed

In fact, the result of a proof body needs to conform to a pending goal only up
to higher-order unification (§3.2.3). Thus the text may actually cover a more
general statement, if it happens to be provable at that level of generality.

have ∀ x . P (f x)

proof

fix y

show P y 〈proof 〉
qed

We see that Isar proof texts are not bound to the accidental formulation of
goal statements, but may raise the level of abstraction at will. Most existing
proof systems are directly focused on particular goal statements instead, cf.
the Intros element of Coq [Barras et al., 1999]), for example. Interestingly,
even let/assume in Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993]
[Wiedijk, 1999] are essentially based on the same procedural paradigm (see also
§4.2.4 and §5.5.1) as the tactical view of Coq.

The following Isar example exploits the idea of generalized proof bodies in order
to re-use an existing proof a second time for a symmetric argument.

lemma (A ∨ B) = (B ∨ A)

proof

fix X Y

— general propositions X, Y may get instantiated later on

— either as A, B or B, A

assume X ∨ Y

thus Y ∨ X

proof

assume X

thus ?thesis ..

next

assume Y

thus ?thesis ..

qed

— first result application

5.2. Basic techniques 99

thus Y ∨ X .

— second (symmetric) result application

qed

Here we have exploited another intrinsic virtue of Isar proofs, namely “cascad-
ing” of contexts. Having exported a result (cf. the first “thus Y ∨ X 〈proof 〉”
above) does not yet invalidate the existing context built up so far, including
any kind of local proof items like auxiliary facts, term abbreviations, or proper
logical context elements. The second “thus Y ∨ X .” applies the very same
result `

∧
X Y . X ∨ Y =⇒ Y ∨ X. In general, later results may involve longer∧

/=⇒ prefixes due to additional context commands issued intermediately.
This incremental behavior is an immediate consequence of the way that the
Isar/VM interpreter manages the corresponding environments of the static proof
configuration of context (cf. §3.2.3). Speaking in terms of plain λ-calculus,
certain parts of nested abstractions (and other binder elements) may be shared
among several expressions, resulting in slightly less formalistic proof texts by
preferring linearized arrangements over strongly nested ones.

Strong assumptions

Unquestionably, assume is the most fundamental proof context element. It
introduces a “strong” assumption in the sense that exported results need to
unify against corresponding premises of an enclosing goal. Thus finished proof
fragments of assume/show essentially provide a balanced textual focus on
a particular open problem, covering both assumptions and conclusions. This
allows proof bodies to be commuted in many situations where conclusions alone
would cause ambiguities. Consider this basic example of ∨ elimination.

assume A ∨ B

hence C

proof

assume B — second case

thus C 〈proof 〉
next

assume A — first case

thus C 〈proof 〉
qed

Furthermore, strong assumptions may be introduced in any order or even re-
peatedly, without changing the behavior of Isar proof processing (cf. §3.2.3).

assume A ∧ B

hence B ∧ A

proof

assume A — (unused)

assume B — (unused)

assume B and A

100 CHAPTER 5. Advanced natural deduction

thus ?thesis ..

qed

Note that this liberal treatment of assumptions is quite important in practice
to tune proof texts according to the most natural flow of information, both for
interactive development and improved readability of the final text. In particular,
properly arranged facts often avoid explicit references to facts and rules (cf. the
discussion in §4.2.4, see also §5.2.3).
On the other hand, assumptions and corresponding goal statements must not
be swapped. In the subsequent example, assume is introduced properly before
its related show (demanding an explicit label).

have A −→ B

proof

assume a: A

show B

proof −
from a

show ?thesis 〈proof 〉
qed

qed

In contrast, the subsequent attempt of introducing assumptions “dynamically”
when required does not work out, since it violates scoping of logical context
elements (abstractions).

have A −→ B

proof

show B

proof −
assume A

— illegal “dynamic” assumption

thus ?thesis
...

The latter version could spare us an explicit reference to the previous fact a, but
it is unacceptable for several reasons. For example, it would break modularity
of Isar proof checking: the particular context introduced within the body of
a sub-proof would change the meaning of the main proof. Also note that the
correct use of assume before show needs to impose the resulting hypothesis
on the result independently of its actual use in the sub-proof. Generally speak-
ing, the Isar/VM interpreter (§3.2.3) implements a discipline of “static scoping”
of proof contexts in order to get these subtle details right. Such fine points
are just too easily overlooked in “real world” implementations of interpreted
languages, although it has been a well-known issue of proper programming lan-
guage semantics for several decades. The initial error of dynamic scoping in
LISP interpreters of the late 1950’s should have been overcome now (at least in
theory) [McCarthy, 1960].

5.2. Basic techniques 101

Other context elements

The presume element provides “weak” assumptions: unlike assume the dis-
charged hypotheses are not solved against any goal premises. Thus former
presumptions are left as new sub-problems to be solved later on. So presume
essentially defers sub-proofs according to a logical “cut” rule.
Just consider the following simple example, involving the rule r = ` A =⇒ C.

have C

proof (rule r)

presume B

thus A 〈proof 〉
next

show B 〈proof 〉
qed

In practice, presume turns out to be most useful in interactive development
where portions of a proof may be temporarily deferred, or to debug failed appli-
cations of assume/show due to faulty assumptions. In such situations assume
may be temporarily replaced by presume to inspect partially applied results
of show, with pending subgoals corresponding to previous presumptions.
Note that exporting results from a context of weak assumptions does not involve
any special treatment of premises in the enclosing goal context (cf. §3.3.1). Thus
the effect is essentially the same as in applications of non-atomic rule statements.

have C

proof (rule r)

show B =⇒ A 〈proof 〉
show B 〈proof 〉

qed

The def element essentially provides an abbreviation for “fix x assume x ≡ t”
where the discharged (and generalized) equation is automatically disposed of via
reflexivity ` t ≡ t. So def performs a definitional extension of the present proof
context (cf. §2.3 for a similar principle for the theory level). The def element is
best studied within a raw proof block, see also §5.2.4. Another characterization
is given in §5.3.3, reducing basic def to more the sophisticated obtain element of
generalized elimination (which corresponds to general conservative extensions).
Interestingly, let is much more relevant in practice. Unlike def it is not a logical
context element, but merely an extra-logical device of term abbreviations (§3.2.3
and §3.4.1). Its very power stems from this arrangement, including conveniences
such as higher-order matching or Hindley-Milner polymorphism (§3.4.3) without
requiring the underlying logical framework to take care of any of these additional
concepts.

The case element provides a generic interface to invoke named context segments
of the form “fix ~x assume ~ϕ”. Cases typically emerge from canonical proof

102 CHAPTER 5. Advanced natural deduction

patterns that have been initially applied to the present goal configuration, see
also the cases and induct methods in §5.4. Non-atomic claims also give rise to
the named case of antecedent referring to the pending rule context (see §5.2.5).

5.2.2 Local facts and goals

In principle, the show goal element of Isar (§3.2.1) is already sufficient to sup-
port natural deduction proofs, there is no particular need for the have version.
Speaking in terms of pure λ-calculus, show closely corresponds to application
(of a local result to a pending goal). Limiting local results to immediately
pending goals turns out as slightly impractical, though (cf. the discussion of
ProveEasy [Burstall, 1998] in §4.2.4).
Isar’s have element does not attempt to refine any goal yet, but merely exhibits
the result to the present proof context. In a sense, have removes the “tension”
from show to fit into an enclosing proof problem. The behavior of have resem-
bles let-expressions in λ-calculus, it binds a local fact to be used eventually in
the subsequent body. Note that Isabelle/Isar even implements the well-known
polymorphic version of let-binding according to Hindley-Milner (cf. §3.4.3).
The effect of “cascaded contexts” already observed in §5.2.1 holds for local facts
as well. Already proven facts (both from show or have) may be re-used later on
without further ado. Isar essentially uses general DAG-shaped organization of
local results rather than pure tree structure. Recall the Knaster-Tarski Theorem
(cf. §1.5) for a somewhat realistic DAG-shaped proof. Here the corresponding
primitive representation duplicates the primitive proof of the shared fact ge =
` f (

⋂
{u. f u ⊆ u}) ⊆

⋂
{u. f u ⊆ u} due to internal β-normalization.

The show element solves both an enclosing goal and exhibits the result locally
(while have only does the latter). Consequently, multiple goals may be covered
in a sequential manner, by re-using previously proven facts as illustrated below.

have A ∧ B

proof

show A 〈proof 〉
from this show B 〈proof 〉

qed

Here we have included the first conjunct in the proof of the second one, analogous
to the rule ` A =⇒ (A =⇒ B) =⇒ A ∧ B. The order of sub-proofs may be
changed as well, since there is no fixed goal focus in Isar (§3.2.3). The following
pattern corresponds to the symmetric rule ` B =⇒ (B =⇒ A) =⇒ A ∧ B.

have A ∧ B

proof

show B 〈proof 〉
from this show A 〈proof 〉

qed

5.2. Basic techniques 103

Both proof steps above have used the rule ` A =⇒ B =⇒ A ∧ B invariably.
We see that the Isar infrastructure of cascaded local facts “enhances” plain
natural deduction rules in a casual manner.

5.2.3 Mixed forward and backward reasoning

We have already explored variations on forward versus backward reasoning in
§4.2.4. Isar’s flexibility in this respect (by virtue of the then element) turns
out as an important ingredient to achieve readable proof texts after all. The
general principle observed here may be illustrated by the following model of the
general situation. Consider the following natural deduction rule:

a1: A1 a2: A2 b1: B1 b2: B2 b3: B3

C
(r)

Here the premises of r are divided into a prefix of ai: Ai that is most appropri-
ately filled in by existing facts (e.g. previous assumptions), and a suffix of bj : B j

that are better solved by separate sub-proofs later (typically the latter involves
increasingly complex statements that require separate universal parameters and
assumptions, due to nested

∧
and =⇒ in the rule). Most common natural de-

duction rules follow this basic arrangement, e.g. consider ∃ elimination ` ∃ x .
P x =⇒ (

∧
x . P x =⇒ C) =⇒ C with exactly one “A” and one “B” premise.

Rules like ∧ introduction ` A =⇒ B =⇒ A ∧ B are more regularly shaped
and admit several valid divisions into prefix and suffix parts, depending on the
particular situation in the proof text at hand.
This split view on rule r gives rise to the following mixed forward-backward
proof pattern: “A” premises are established via have in the preceding context,
while the “B” ones are covered in the body of the main claim via show.

have a1: A1 〈proof 〉
...
have a2: A2 〈proof 〉
...
from a1 and a2

have C

proof (rule r)

show b1: B1 〈proof 〉
...
show b2: B2 〈proof 〉
...
show b3: B3 〈proof 〉

qed

104 CHAPTER 5. Advanced natural deduction

This arrangement distributes the corresponding sub-proofs over the Isar text
nicely, with the “A” given in advance and the “B” ones within the body. Re-
call that the basic rule method demands chained facts to be given in proper
order (§3.3.2), the from line above needs to take care of this. We do not at-
tempt to build ad-hoc costly permutations into basic steps, any serious proof
search is better left to explicit automated proof methods (like blast in classical
Isabelle/HOL, see §7.3).
When conducting single natural deduction proof steps in practice, the canonical
order of premises to be filled in beforehand often coincides with the most nat-
ural arrangement of the corresponding pieces of proof text. Standard natural
deduction rules already tend to be formulated that way. Furthermore, there
is normally that split into “A” and “B” parts as a prefix and suffix of rule
premises, respectively. In rare circumstances, fact positions may be skipped
using the global fact “-”, which refers to to `

∧
A. A =⇒ A. This is illustrated

by the following synthetic example.

have b: B 〈proof 〉
...
from - b have A ∧ B

proof (rule conjI)

show A 〈proof 〉
qed

Note that we need to specify the ∧ introduction rule explicitly, since the dummy
fact “-” does not provide any structural clue about the intended proof step.
Plenty of non-sensical eliminations would be tried before any introduction.
In fact, the seamless way of single step reasoning in Isar heavily depends on
proper indication of the use of existing facts (cf. the related discussion in §4.2.4).
Otherwise, rather verbose method specifications need to be given, cluttering the
proof text unnecessarily. A good balance of facts versus methods turns out as
a key factor to achieve readable proof texts. This is the deeper reason why the
(theoretically) redundant then modifier is so important in Isar.

In conclusion we present a simple example of shifting the balance of indicating
facts versus proof methods back and forth. Assume that ab = ` A =⇒ B and
a = ` A are available in the present context.

have B by (rule ab) (rule a)

— two methods (initial and terminal)

from a have B by (rule ab)

— fact chained towards method

from ab and a have B .

— two facts applied immediately

The second form is most frequently encountered in practice. This scheme may

5.2. Basic techniques 105

be generalized to any number of facts and arbitrary complex proof tools (see
also §7.3). Then it nicely achieves an indication of the “relevance of facts” in the
text, while leaving method specifications uncluttered from additional arguments
(see the related discussion in §7.5.2).

5.2.4 Raw proof blocks

Block structure is readily available in Isar proofs, but is normally not made
explicit in the text. Sub-proofs implicitly live within their own local con-
text (§3.2.3), without requiring separate parentheses given by the user. Even
more, the next command allows to “jump” blocks without requiring separate
close/open specifications. Nevertheless, explicit block structure is occasionally
quite useful as well. Isar provides the “{” and “}” elements to delimit proof
blocks separately (§3.2.3); this essentially acts like a headless sub-proof (lacking
the initial claim) where facts may freely float into “{” and out of “}”.

Forward composition of rules

The result of a proof block is its final fact exported into the enclosing con-
text. Local assumptions etc. are discharged accordingly. Thus we may prove
rule statements in a forward fashion, as illustrated below by the well-known
propositional rules of K and S.

{
assume A and B

have A .

} note K = this — ` A =⇒ B =⇒ A

{
assume x : A =⇒ B =⇒ C

assume y : A =⇒ B

assume z : A

have C

proof (rule x)

show A by (rule z)

show B

proof (rule y)

show A by (rule z)

qed

qed

} note S = this — ` (A =⇒ B =⇒ C) =⇒ (A =⇒ B) =⇒ A =⇒ C

The general idea is to spell out the final result near the beginning of the block
via assume and have. The result needs to be named afterwards, since any local
bindings would be invisible outside of the block. The following variations on S
rearrange the course of reasoning internally. Note that the parts contributing

106 CHAPTER 5. Advanced natural deduction

to the final result (assumptions and the last fact) may not be reordered without
affecting the exported rule itself.

{
assume x : A =⇒ B =⇒ C

assume y : A =⇒ B

assume z : A

from y and z have B .

with x and z have C .

} note S = this — ` (A =⇒ B =⇒ C) =⇒ (A =⇒ B) =⇒ A =⇒ C

{
assume x : A =⇒ B =⇒ C

assume A =⇒ B and z : A hence B .

with x and z have C .

} note S = this — ` (A =⇒ B =⇒ C) =⇒ (A =⇒ B) =⇒ A =⇒ C

As more and more intermediate statements are introduced in the body above it
becomes increasingly difficult to determine the final result from the given text.
Just like many other useful concepts of Isar, some taste and discernment is re-
quired of the writer, lest the text become incomprehensible for the reader; recall
our general principle of liberality (§1.3). Note that rules may be established via
plain backward reasoning as well (see also §5.2.5).

Blocks as a logic laboratory

Another virtue of raw proof blocks is exhibited in experimentation and teaching
of natural deduction proof composition. Due to the absence of an immediate
goal context, the behavior of logical declarations may be studied in isolation.
This technique basically amounts to some kind of “formal logic laboratory”. In
particular, the characteristics of assume/presume and def may be expressed
within Isar itself quite succinctly as follows.

{
assume A

have C 〈proof 〉
} — this = `A =⇒ C

{
presume A

have C 〈proof 〉
} — this = `A =⇒ C

{
def x ≡ t

have P x 〈proof 〉
} — this = `P t

5.2. Basic techniques 107

Note that assume and presume are really the same in pure forward reasoning,
they only differ when exporting results into a goal context (cf. §3.3.1). Moreover,
the intra-logical nature of def results in a new local object x that is treated as
opaque by default, until the fact ` x ≡ t is unfolded explicitly. This amounts
to ad-hoc abstraction of a concrete expression at hand, which already is the
main reason why def may get used occasionally instead of the slightly more
convenient let element for term abbreviations (§3.2.3 and §3.4.1).
Note that let turns out as more useful in practice since it merely is a “formal
illusion” that does not have any impact on the logical context at all. As illus-
trated below nothing needs to happen at discharge time, the abbreviations are
fully expanded before passing the input down to the logical inference machinery.

{
let ?x = t

have P ?x — ?thesis = P t

〈proof 〉 — this = `P t

} — this = `P t

The full power of let is unleashed by higher-order matching (cf. §3.4.1), which
allows to analyze the structure of statements in an extra-logical fashion.

Proof inversion patterns

Tactical theorem proving is strongly biased towards backwards reasoning, where
an initial claim is refined consecutively until a finished state is achieved. This
mode of operation is particularly subtle in conjunction with automated methods
that “simplify” goals (like simp or auto in Isabelle/HOL, see §7.3).
Isar does not pose any restrictions on methods used in initial proof steps. So one
might come up with the following pattern of automated backwards reasoning in
structured Isar proofs as well.

have C

proof auto — automated initial step (generally a bad idea)

fix x

assume A x

show D 〈proof 〉
qed

From the operational viewpoint, this proof text corresponds to a tactic script
that would usually be considered as slightly “unstable” according to Isabelle
folklore. The problem is that the behavior of the initial auto step is very sen-
sitive to changes of the collection of global rule declarations of the background
theory (see also §7.3 and §7.4). The refined situation needs to be covered in the
Isar proof body via explicit parameters and propositions given in the text. Auto-
mated tools usually become stronger as the library evolves over the years, which
might cause slightly different local problems to emerge eventually, demanding
the writer to adapt the original formulation accordingly.

108 CHAPTER 5. Advanced natural deduction

have C

proof auto — automated initial step (generally a bad idea)

fix x and y

assume A ′ x y and B x y

show D ′ 〈proof 〉
qed

Is a rather bad idea to let arbitrary automated tools determine the decomposi-
tion of problems in structured proof texts. Unstructured scripts are less sensitive
to such problems, as explicit statements are avoided as much as possible in the
first place (rendering the script unreadable, of course).

The following simple technique of “inverted proofs” achieves more robust proof
texts that are invariant under monotonic changes of of automated tools. Of
course, the inner proof block may still have emerged from a previous experi-
mental phase of automated backwards refinement as seen before.

have C

proof −
{

fix x

assume A x

hence D 〈proof 〉
}
thus ?thesis by auto

qed

Certainly the final integration phase may still break down if the behavior of
auto changes in an uncouth manner (which occasionally happens in reality).
On the other hand, there is now a significantly higher level of tolerance built
into the text. In fact, the above pattern may be considered as a very simple
instance of “big-step reasoning”, where portions of text are composed loosely
and the exported result is finally included in an automated step. See §6.4.3 for
the related discussion of “degenerate calculations” in Isar.

5.2.5 Non-atomic statements

The Isar proof language exploits the full potential of higher-order nested natural
deduction of the basic logical framework (cf. §2.2): assumption and conclusion
statements may be arbitrary meta-level propositions, there is no artificial re-
striction to atomic ones (i.e. those of the object-logic).
Interestingly, traditional Isabelle tactic scripts [Paulson and Nipkow, 1994] are
quite limited in this respect. Special treatment is required for any goal statement
with non-atomic premises (operationally similar to the technique of raw proof
blocks covered in §5.2.4). Even worse the most basic Isabelle tactics are unable
to treat non-atomic facts and premises as expected (most notably assume_tac

5.2. Basic techniques 109

[Paulson, 2001b]). In a sense, Isabelle’s old-style user experience tends to emu-
late the original HOL tradition of tactical proving [Gordon and Melham, 1993]
[Gordon, 2000], rather than staying faithful to its own roots [Paulson, 1989]
[Paulson, 1990]. Automated tactics in Isabelle essentially used to share the
same problem, but have been enhanced for use in Isabelle/Isar [Wenzel, 2001a]
by providing a filter that internalizes meta-level

∧
/=⇒ statements into the

object-logic via separate ∀ /−→ connectives behind the scenes.

The most basic technique to derive arbitrary rules in Isar is to compose a local
proof context that mimics the top-level structure of the statement, claiming the
conclusion as a new goal. This reduces the rank of the original problem, while
exhibiting its assumptions as local facts to the subsequent proof text. Consider
the following simple example.

have
∧

x y . A x y =⇒ B x y =⇒ C x y

proof −
fix x and y

assume a: A x y and b: B x y

thus C x y 〈proof 〉
qed

One might consider to address the constituents of the initial rule statement
as term abbreviations introduced beforehand, avoiding to repeat all of these
(probably large) propositions in the text.

have
∧

x y . A x y =⇒ B x y =⇒ C x y

(is
∧

x y . ?A x y =⇒ ?B x y =⇒ ?C x y)

proof −
fix x and y

assume a: ?A x y and b: ?B x y

thus ?C x y 〈proof 〉
qed

Alternatively, we may use the standard infrastructure for goal statements pro-
vided by the Isar interpreter (§3.2.3), which includes the antecedent case repre-
senting the original

∧
/=⇒ context symbolically, and the ?thesis abbreviation

for the conclusion. Note that the latter is abstracted over any outer univer-
sal parameters. Thus we may achieve an almost fully symbolic proof body as
follows, where only the local parameters need to be repeated in the text.

have
∧

x y . A x y =⇒ B x y =⇒ C x y

proof −
case antecedent

thus ?thesis x y 〈proof 〉
qed

This form has the minor drawback that “case antecedent” introduces the full
assumption context simultaneously. Thus we may not directly refer to facts
assumptions, such as a = ` A x y and b = ` B x y encountered before. Isar

110 CHAPTER 5. Advanced natural deduction

intentionally refrains from low-level operations on lists of theorems (facts and
goals are generally treated as opaque).
In common applications of the previous pattern one needs to refer only to few
assumptions separately, while all others are covered collectively. There are essen-
tially two different ways to get hold of individual assumptions from the present
context, either use have with an immediate proof, or repeat relevant assump-
tions by separate assume elements. Recall that Isar proof contexts are invariant
wrt. commuted or duplicated entries (cf. §5.2.1).

have
∧

x y . A x y =⇒ B x y =⇒ C x y

proof −
case antecedent

— performs “fix x and y assume A x y and B x y” simultaneously

have a: A x y . — extracted result

assume b: B x y — repeated assumption

show ?thesis x y 〈proof 〉
qed

Apart from the basic have form above there are further advanced techniques
of exploiting the implicit context information provided by case, especially in
conjunction with obtain (see §5.3).

When proving non-atomic statements the initial step need not necessarily be
idle. Apart from the “−” method encountered so far, we may as well use plain
rule steps. Since rule application via higher-order backchaining (§2.4) is mono-
tonic wrt. the internal goal context, the previous techniques of fix/assume or
“case antecedent” are still applicable. Only the conclusion may require different
treatment due to the initial refinement.
The following (synthetic) example illustrates a typical situation where the orig-
inal goal context is augmented due to the initial proof step.

have
∧

x . A x =⇒ B x =⇒ C −→ D

proof

fix x

assume A x and B x and C

thus D 〈proof 〉
qed

Monotonic rule application like this is desirable in most applications involving
non-atomic claims, with the notable exception of induction. Isar provides spe-
cific support for induction over rule statements, where the whole configuration
participates in the recursive reasoning (see also §5.4.5). Here the capabilities
of Isabelle tactic scripts would fail altogether, demanding to switch back to
object-level ∀ /−→ connectives in order to make the intended “rule” appear as
an atomic conclusion only. This would typically demand additional steps to
strip connectives later on, causing an excessive dose of formal noise.

5.3. Generalized elimination 111

5.3 Generalized elimination

Consider the canonical ∃ elimination rule of natural deduction:

∃ x . P x

[x , P x]....
C

C

Taking this as a model, the basic idea of generalized elimination may be de-
scribed as follows. At a certain point in a proof, local parameters with additional
properties may be introduced such that subsequent results not mentioning these
auxiliary parameters are exported without acquiring additional hypotheses.
In other words generalized elimination corresponds to a conservative extension
of the proof context, where auxiliary parameters and assumptions may be intro-
duced without affecting any self-contained results (cf. §2.3 for a similar concept
at the level of theories rather than proofs).

Isar supports generalized elimination by the derived command obtain, as intro-
duced below (see §5.3.1 and §5.3.2). This turns out as a very powerful mecha-
nism, both from the basic logical point of view, as well as in actual applications.
As one of its most important virtues, obtain is able to hide the inherent com-
plexities of elimination rules that involve new local parameters. Thus Isar proof
texts may be kept clean from unnecessary formal noise, supporting a plain linear
format that is close to the casual style handling existential parameters in com-
mon mathematical practice. In order to illustrate the fundamental difference,
consider the following two versions of ∃ elimination turned into Isar text.

assume ∃ x . P x

hence C

proof

fix x assume P x

thus C 〈proof 〉
qed

assume ∃ x . P x

then obtain x where P x ..

hence C 〈proof 〉

The first version directly mimics the primitive ∃ elimination rule, which involves
an additional level of nesting and requires an explicit goal statement C (cf.
§4.2.2). The second version is slightly more handsome, thanks to a better policy
imposed on internal reasoning steps, as we shall see later on.
The obtain element supports more liberal linear arrangements of proof text,
avoiding separate nesting of sub-proofs altogether. Any number of results may
be established in the context of obtain. The user does not even have to think
about these at the point where generalized elimination is performed. So we

112 CHAPTER 5. Advanced natural deduction

do not need to state the ultimate result of C yet, but may just explore the
present situation in a forward manner. This results in a style of structured
proof composition that is mostly liberated from explicit goals.

assume ∃ x . P x

then obtain x where P x ..

After having sorted out the logical foundations of obtain (see §5.3.1), as well
as proper support for realistic soundness proofs of the existential claim involved
(see §5.3.2), we shall discuss further useful Isar proof patterns of generalized
elimination later on (see §5.3.3).

5.3.1 Obtaining contexts

The derived command obtain extends the basic syntax of Isar commands (cf.
chapter 3) as follows.

obtain (var+ where)? (name-atts:)? prop+ (and (name-atts:)? prop+)∗

The basic logical idea behind obtain is expressed by the subsequent (simplified)
implementation in a concise manner. We reserve the theorem name reduction
for internal use. Furthermore we use the generic assm primitive (§3.2.1) with
the derived rule scheme of eliminate as given below.

obtain ~x where q1: ~ϕ1 and . . . and qn: ~ϕn 〈proof 〉 =

have reduction:
∧

C . (
∧
~x. ~ϕ1 . . . ~ϕn =⇒ C) =⇒ C 〈proof 〉

fix ~x assm �eliminate reduction� q1: ~ϕ1 and . . . and qn: ~ϕn

Γ `
∧

C . (
∧
~x. ~ϕ1 . . . ~ϕn =⇒ C) =⇒ C

Γ ∪ {~ϕ1 . . . ~ϕn} ` ψ
Γ ` ψ (eliminate)

proviso: ~x not free in Γ or ψ

The rule eliminate is easily derived within the basic logical framework (§2.2):
from Γ ∪ {~ϕ1 . . . ~ϕn} ` ψ discharge the additional assumptions and generalize
over ~x (clearly this will not affect Γ or ψ due to the proviso); then specialize the
proposition C of the reduction statement to ψ, and finally apply modus ponens.

We see that obtain is somehow dual to plain local statements established via
have: while “have ϕ 〈proof 〉” means a certain conclusion holds in the present
context, “obtain ~x where ~ϕ 〈proof 〉” says that we may assume a number of
facts involving new local parameters. This observation of duality is related to
the fundamental HHF format

∧
~x. ~H =⇒ H of logical statements (§2.4), where

the left-hand side admits parameters and multiple assumptions, while the right-
hand side consists of a single conclusion only.

5.3. Generalized elimination 113

Another insight on the essence of obtain may be gained by looking closely at
the reduction part. Apparently, this statement expresses “existence” of elements
with certain properties:

∧
C . (

∧
x . P x =⇒ C) =⇒ C coincides with the usual

definition of ∃ x . P x within a higher-order framework (e.g. see §8.1.2). Likewise,
multiple parameters correspond to nested quantifiers and multiple assumptions
to conjunction. Without the detour via explicit ∃ and ∧ connectives, we may
understand the reduction statement more abstractly as a conservative exten-
sion of the proof context, it explicitly states that self-contained results C may
get rid of the temporary assumptions introduced beforehand without acquiring
additional hypotheses. This observation is exploited in the eliminate rule.
The remaining issue of practical usability of obtain is how to perform the proof
of reduction adequately. Due to its nesting to the left-hand (negative) side of
meta-level connectives, the raw statement as given above is slightly awkward
to handle directly via basic proof steps. Practical applications really demand
some further refinement of the proof obligation encountered here.

5.3.2 Supporting realistic soundness proofs

In order to support realistic proofs of the reduction statement of obtain, we
shall now give more elaborate definition. The basic idea is to break up the raw
soundness statement, such that its structure is directly exposed to the Isar proof
text, rather than as a primitive proposition. While being technically subtle to
design, the resulting proof situation admits a number of quite natural patterns
to complete the soundness proof, either in single steps or by automated tools.
That additional complexity is hidden from readers of Isar proof texts, while
writers may choose to ignore a few superficial details going on internally and
merely get acquainted with a number of common reasoning patterns.

For the subsequent full definition of obtain, let 〈fact〉 refer to any previous
results indicated for use in forward chaining.

〈fact〉 obtain ~x where q1: ~ϕ1 and . . . and qn: ~ϕn 〈proof 〉 =

have reduction:
∧

C . (
∧
~x. ~ϕ1 . . . ~ϕn =⇒ C) =⇒ C

proof succeed
fix thesis
assume that [intro]:

∧
~x. ~ϕ1 . . . ~ϕn =⇒ thesis

from 〈fact〉 show thesis
apply (insert that) 〈proof 〉

qed
fix ~x assm �eliminate reduction� q1: ~ϕ1 and . . . and qn: ~ϕn

To understand this definition of obtain, first observe that we have only refined
the proof of the reduction statement. So the explanations given for the simplified
version before are still valid due to compositionality of Isar proof checking.
The initial proof step really does nothing yet; any facts indicated for immediate
use are absorbed here. The subsequent proof body proceeds in the canonical

114 CHAPTER 5. Advanced natural deduction

fashion to establish a nested rule statement (cf. §5.2.5): we fix an arbitrary
thesis, assume the premise that of the reduction (declared for implicit use as in-
troduction rule), and claim the remaining goal. The proof of the latter captures
the original facts and inserts the that part just before entering the remaining
soundness proof as given in the original text. That additional tweak involving
apply is intended to make automated proof tools behave more gracefully: the
resulting goal of (

∧
~x. ~ϕ1 . . . ~ϕn =⇒ thesis) =⇒ thesis is essentially the same

as the initial reduction statement, with all relevant information already present
in the internal proof state. This is how common automated proof tools expect
a situation to be solved with a single stroke (see also §7.3); if all fails, one may
still refer to that explicitly in proof method specifications.
In contrast, single-step proof usually requires the individual constituent parts
of the reduction made available as separate elements. Note that due to mono-
tonicity of basic rule application (§2.4), the initial goal as modified by apply
does not affect single rule steps at all.

In order to see soundness proofs of obtain in action, suppose we have certain
standard elimination rules declared in the current context, especially ∃ and ∧.

∃ x . P x =⇒ (
∧

x . P x =⇒ C) =⇒ C
A ∧ B =⇒ (A =⇒ B =⇒ C) =⇒ C

Ideally, we would expect to satisfy the obligation posed by obtain after having
performed a single elimination step modeled after the above statements. This
almost happens to work out, although it requires an additional step inside.

assume ∃ x . P x

then obtain x where P x

proof

fix x assume P x

thus thesis by (rule that)

qed

assume A ∧ B

then obtain A and B

proof

assume A and B

thus thesis by (rule that)

qed

Fortunately, assumption steps like “(rule that)” are already covered by Isar’s
builtin notion of solved goal configurations (§3.2.3). So we may actually collapse
the above proofs to a single rule step “..” to achieve a succinct presentation.

assume ∃ x . P x

then obtain x where P x ..

assume A ∧ B

then obtain A and B ..

5.3. Generalized elimination 115

Such single step proofs work just the same for any statement χ that provides
an elimination scheme ` χ =⇒ (

∧
~x. ~ϕ =⇒ C) =⇒ C. As usual in Isar, there

is nothing special about standard logical connectives, apart from being already
declared in the standard theory library. For example, common schemes involving
set-theory operators of Isabelle/HOL (see chapter 7) may look like this.

assume x ∈
⋃

C

then obtain A where x ∈ A and A ∈ C ..

assume a ∈ Domain R

then obtain b where (a, b) ∈ R ..

assume b ∈ Range R

then obtain a where (a, b) ∈ R ..

Note that the single rule schemes discussed so far did not yet employ the “[intro]”
declaration of that given in the definition of obtain above. Introduction pat-
terns employing this feature are less frequently encountered in practice, and
shall be discussed later on (see §5.3.3).

5.3.3 Common patterns of generalized elimination

Canonical eliminations

We have already seen single step eliminations involving standard connectives.
Once that multiple elements are encountered we better make use of existing
proof tools for first-order logic to perform routine steps automatically.

assume ∃ x y z . P x ∧ Q y z ∧ R z

then obtain x y z where P x and Q y z and R z by blast

Incidently, this version with explicit existential statements preceding obtain
does not quite represent the most practical pattern yet. The above text basically
contains two copies of the constituent propositions P x and Q y z and R z,
which may be rather unwieldy expressions in reality. In realistic situations the
existential claim typically emerges from a different fact in a more or less “trivial”
fashion, mediated by standard automated tools (see also §7.3).

assume something

hence ∃ x y z . P x ∧ Q y z ∧ R z by auto

then obtain x y z where P x and Q y z and R z by blast

Furthermore, this pattern is usually better expressed without mentioning the
intermediate existential statement in the first place.

assume something

then obtain x y z where P x and Q y z and R z by auto

This simplification assumes that the single automated proof step given here
manages to bridge that gap directly. In general, the behavior of automated proof

116 CHAPTER 5. Advanced natural deduction

tools may change significantly by inserting intermediate claims. Suppressing
these as proposed above may make a big difference in the complexity of the new
situation. On the other hand, the present situation is a very special case, where
the intermediate existential statement is essentially just a different expression
of the main obligation at hand;

∧
C . (

∧
x y z . P x =⇒ Q y z =⇒ R z =⇒ C)

=⇒ C and ∃ x y z . P x ∧ Q y z ∧ R z are even treated the same by typical
automated proof tools like blast or auto (due to internal Skolemization).
Interestingly, the more compact form above actually works even better than
expected in many situations. Existential quantifiers cause additional overhead
for simple proof tools that may already be sufficient for the true content of the
soundness proof. Avoiding ∃ in the first place, highly complex methods like
auto may be replaced by plain rewriting of simp, for example (see also §7.3).

assume something

then obtain x y z where P x and Q y z and R z by simp

Speaking in terms of proof theory rather than automated reasoning, obtain
acts pretty much like cut elimination of existential statements: instead of exis-
tential introductions followed by eliminations, we just proceed directly from the
contributing facts to the eliminated form of obtained results. This reduces both
the complexity of primitive proofs, which are not directly encountered in Isar
anyway, and simplifies mechanized proof processing. It also enables the primary
proof text to express that reasoning more succinctly.
So we have actually encountered a rare coincidence of substantial simplifications
at different conceptual levels of formal proof at the same time. Commonly the
issues of primitive inferences versus primary proofs (§1.4) need not be directly
related, or may be even complementary to each other.

Introduction proofs

The obtain element may be really understood as a generalized form of ∃ and
∧ in both directions. In particular, we may also perform introduction proofs,
as illustrated by the following basic patterns.

obtain x where P x 〈proof 〉
hence ∃ x . P x ..

obtain A and B 〈proof 〉
hence A ∧ B ..

In typical applications of such schemes, the obtained parameter x stems from
another (explicit or implicit) existential fact established earlier. Thus we accom-
modate notoriously difficult reasoning of the kind ∃ x . P x =⇒ ∃ y . Q y, even
without requiring either quantification to be stated explicitly (e.g. see the appli-
cation of chapter 10, especially the main invariance proof in §10.6.3). Further-
more, the conjunctive form above achieves the effect of multiple simultaneous
results (see also the related discussion in §9.4.1).

5.3. Generalized elimination 117

Apart from changing its external use, we may also reverse the internal stan-
dard procedure of soundness proofs of obtain, replacing the previous scheme of
elimination–introduction by introduction–elimination.

obtain x where P x

proof

show P a 〈proof 〉
qed

obtain A and B

proof

show A 〈proof 〉
show B 〈proof 〉

qed

Note that the initial proof steps encountered here actually use the “[intro]” dec-
laration of that given in our full definition of obtain (§5.3.2). After backchaining
of `

∧
x . P x =⇒ thesis or ` A =⇒ B =⇒ thesis, we are required to exhibit

an explicit existential witness or solve two conjuncts, respectively. This pattern
may be generalized to several parameters and assumptions, without requiring
advanced proof tools (the that rule ranges simultaneously over the new context).

obtain x y z where P x and Q y z and R z

proof

show P a 〈proof 〉
show Q b c 〈proof 〉
show R c 〈proof 〉

qed

Little more needs to be said about introduction of the conjunction case, it merely
results in a different arrangement of the same reasoning performed before. In
contrast, there is a fundamental difference with existential parameters getting
involved: after the initial introduction we are left with a stronger problem to be
solved in the present context. In particular, we cannot just produce an abstract
existential fact and eliminate it for the witness of “show P a”, as this would
violate the scoping rules of parameters. The following failed attempt documents
this common error of beginners when reasoning with existential statements.

obtain x where P x

proof

have ∃ x . P x 〈proof 〉
thus P a

...

In order to finish that proof, one would essentially require a choice principle
of the underlying object-logic, in order to extract a witness from an abstract
existential statement “out of scope”, so to say. Incidently, the version of HOL
used in the Isabelle/HOL application environment (see chapter 7) does provide

118 CHAPTER 5. Advanced natural deduction

Hilbert’s choice operator (see §8.5), which could be used to fix our present
mistake. On the other hand, we certainly would not like to assume strong
choice principles for arbitrary object-logics of the Isabelle/Isar framework. This
way of repairing broken elimination proofs via choice principles is certainly not
intended as the primary use of the present introduction scheme of obtain.
A more useful application is to achieve a different proof layout in particular
situations where the writer wishes to hide large proofs of existential introduction
inside the body of the soundness proof. The main reasoning may then proceed
with abstract existential parameters and their characteristic assumptions in a
fully abstract manner. This is just another instance of the existential cut-
elimination observed before, we may directly manipulate generalized existential
statements in the proof text without ever needing explicit ∃ quantification.

Obtained parameters in forward proof

The obtain command has been defined as a derived context element of the
basic Isar framework of natural deduction (cf. §3.3.1). In particular, obtain is
not directly dependent on a goal configuration. Any number of results may be
exported from its scope provided that its local existential parameters are not
exposed to the outer context.
The Isabelle/Isar system implementation [Wenzel, 2001a] performs an explicit
check of the proviso of existential parameters (cf. the inference rule eliminate
given in §5.3.1). This achieves meaningful error messages of incremental proof
processing. Otherwise the user would get a low-level failure of the underlying
inference kernel of Isabelle/Pure that is quite hard to trace to the corresponding
obtain language element located somewhere farther upwards in the proof text.
It is important to note that this high-level checking of side-conditions is just
a matter of user-convenience. Due to “manifest soundness” (§1.3) Isar proof
processing may never produce “wrong” theorems in the first place.

The export behavior of obtain may be observed without being distracted by
pending goals, using raw proof blocks again as a “logic laboratory” (cf. §5.2.4).

{
obtain x where P x 〈proof 〉
have C 〈proof 〉
} — this = `C

There is no need to export a single result C statement from the block, but only
ensure that any fact produced there do not mention obtained parameters. In
particular, the block may not be closed right after obtain itself, as this would
be an illegal attempt to export ` P x directly. There is no problem to export a
conclusion like ` ∃ x . P x, where the existential parameter is again being bound.

{
obtain x where P x 〈proof 〉

5.3. Generalized elimination 119

hence ∃ x . P x ..

} — this = `∃ x . P x

Incidently, the fundamental inability to export obtained facts immediately is
the deeper reason why there is nothing like obtain-goal in Isar, which would
include solving of enclosing goals, just like show opposed to have (§3.2.3 and
§5.2.2). This variant form of obtain-goal would never work with existential
parameters, limiting its advantage over the existing show element to simulta-
neous conclusions. The latter feature is not much of an improvement either,
since multiple sequential show statements already achieve a similar effect.

Apart from obtain, we have already covered simpler derived context elements
of Isar (§3.3.1 and §5.2.1). This raises the question of how these are related.
First of all, assume and presume (which are the same up to the exact effect
on an enclosing goal context) introduce immediate premises, which induces an
additional hypothesis on any exported result (cf. §3.3.1). Assumptions like this
are not “proven”, but typically become admissible in particular situations, e.g.
as the effect of an earlier backward step. In contrast, obtain involves an explicit
proof that a number of facts (with parameters) may be assumed just now, such
that self-contained results may get rid of the pending hypothesis.
The def declaration (cf. §3.3.1) refers to intro-logical definitional extensions of
the proof context. The same idea may be represented via the general conser-
vative extension mechanism of obtain, mediated via reflexivity and (implicit)
substitution of “≡”. So we may relate obtain and def as follows.

{
def x ≡ t
have P x 〈proof 〉
} — this = `P t

{
obtain x where x-def : x ≡ t
proof

show t ≡ t by (rule reflexive)
qed
have P x 〈proof 〉
hence P t by (unfold x-def)
} — this = `P t

Representation proofs

Representations of existing elements in terms of other concepts are a common
theme in many applications. A typical example of representation in plain math-
ematics is illustrated by the following examples.

assume y ∈ range f

then obtain x where y = f x ..

120 CHAPTER 5. Advanced natural deduction

assume surj f

then obtain x where a = f x ..

Such representation patterns are actually just further instances of the general
elimination form of obtain already seen before. Nevertheless, we may gain some
further understanding of common patterns of informal reasoning with “elements
of the form of something”. In mathematical proofs one would usually refrain
from stating any kind of explicit existential statement in between, but simply
proceed with the obtained representation in a casual manner. Here obtain
turns out as an adequate formal representation.

Slightly more concrete representations are frequently encountered in computer-
science applications, typically involving concrete syntactic models (e.g. see chap-
ter 10). The most basic instance essentially proceeds as follows.

fix x y z assume (a, b, c) = (x , f y , z) and P (f y)

then obtain d where b = f d and P b by simp

Here the fix/assume part is typically not stated explicitly in the text, but
stems from a cases or induction scheme (see also §5.4 and §7.2.1). There are
usually several new parameters like x, y, z that become redundant after some
“obvious” simplifications. The above obtain pattern extracts the key represen-
tation properties succinctly, hiding superfluous parameters within the atomic
proof step of “by simp”.
Purely syntactic representations are occasionally encountered as well, usually
related to inductive datatypes (see also §7.2.1). Consider these trivial examples.

assume 0 < n

then obtain m where n = Suc m 〈proof 〉

assume 1 < n

then obtain m where n = Suc (Suc m) 〈proof 〉

We see that obtain supports numerous useful proof patterns, providing a high-
level view on general elimination rules ` ~A =⇒ (

∧
~x. ~B ~x =⇒ C) =⇒ C, with

a single “case” of
∧
~x. ~B ~x =⇒ C and an identical conclusion C. Different

proof techniques are required once that several cases or even recursive ones get
involved. The corresponding concepts of case-analysis and induction shall be
introduced in §5.4. These will be centered around the specific proof methods of
cases and induct, which are may be used together with case.

5.4 Proof by cases and induction

5.4.1 Immediate patterns of cases and induction

Since Isar is based on a generic higher-order framework there is in principle
nothing special about proof by cases and induction. First of all, an initial

5.4. Proof by cases and induction 121

problem may be split into several sub-problems just by using an appropriate
rule, e.g. the standard one of ∨ elimination. As is typical for case rules the main
thesis is preserved, but additional local assumptions emerge in each branch.

assume A ∨ B

hence C

proof

assume A

thus ?thesis 〈proof 〉
next

assume B

thus ?thesis 〈proof 〉
qed

Note that there is nothing special about the next command (§3.2.3), it merely
provides a succinct form to manage separate blocks within the proof body.
Blocks are usually required in applications of case-split rules since each sub-
problem may assume its own local context. This basic structure is made explicit
below, where the text mimics the rule ` A ∨ B =⇒ (A =⇒ C) =⇒ (B =⇒ C)
=⇒ C more directly.

assume A ∨ B

hence C

proof

{ assume A thus ?thesis 〈proof 〉 }
{ assume B thus ?thesis 〈proof 〉 }

qed

Cases need not depend on major premises to be eliminated, but may naturally
arise from inherent properties of the underlying structure (of types) as well, like
boolean case split of classical logic illustrated below.

have C

proof (rule case-split)

assume A

thus ?thesis 〈proof 〉
next

assume ¬ A

thus ?thesis 〈proof 〉
qed

Case rules may introduce local (existential) parameters, too. Consider the fol-
lowing pattern involving the canonical non-recursive representation of the type
of natural numbers (see also §7.2.1).

have C

proof (rule nat .exhaust)

assume n = 0

thus ?thesis 〈proof 〉

122 CHAPTER 5. Advanced natural deduction

next

fix m assume n = Suc m

— existential parameter m only occurs in local assumption

thus ?thesis 〈proof 〉
qed

Induction rules are similar to the ones for plain cases encountered so far, but in-
volve a few further issues. In particular, there are (universal) inductive parame-
ters occurring in the conclusion. Thus the main thesis is not preserved as before,
but is subject to the inductive structure of the logical entities involved. Induc-
tion proofs may in principle be performed via basic rule applications (§3.3.2),
but it is generally a good idea to provide an explicit instantiation (§3.3.2) of the
induction parameter (or the predicate), in order to avoid unexpected results of
higher-order unification (§2.4).

have P n

proof (rule nat .induct [of P n])

show P 0 〈proof 〉
next

fix n assume P n

thus P (Suc n) 〈proof 〉
qed

Here induction over natural numbers has been presented as an introduction
pattern since it directly refers to an inherent property of the underlying type
structure. Inductions in elimination form (involving explicitly chained facts)
typically occur for inductive sets (see §7.2.1). For example, consider the follow-
ing pattern of reasoning over the set of finite sets. The inductive definition of
Finites used below is from the main Isabelle/HOL library (see §7.4).

assume A ∈ Finites

hence P A

proof (rule Finites.induct)

show P {} 〈proof 〉
next

fix a :: ′a and A :: ′a set

assume A ∈ Finites and P A

thus P (insert a A) 〈proof 〉
qed

In this form, the syntactic instantiation of the induction rule has been replaced
by an explicit membership assumption chained into the rule method.

As illustrated by the previous proof patterns, we see that case splits and induc-
tion schemes may be directly expressed within the existing Isar framework. The
inherent capabilities of the Isar proof processor already cover handling of sepa-
rate sub-problems, as well as local contexts arising in individual cases (§3.2.3).
Furthermore, the higher-order nature of the underlying framework (§2.2) and

5.4. Proof by cases and induction 123

its basic operations of higher-order back-chaining of arbitrary rules (§2.4) ac-
commodate general induction schemes nicely. So we could in principle conclude
the exposition of proof by cases and induction at that stage.
On the other hand, several issues prevent the present techniques from scaling up
to larger applications. This includes minor annoyances, such as slightly low-level
method specifications of “(rule nat .exhaust)” or “(rule nat .induct [of P n])”.
More serious problems are those of large local contexts arising from inductive
definitions in typical computer-science applications (e.g. chapter 10), and the
inadequate treatment of non-atomic induction predicates experienced by naive
use of higher-order backchaining involved in the rule method.

Subsequently we outline a few simple additions to the basic Isabelle/Isar setup
considered so far, in order to support proof by cases and induction more conve-
niently. This merely requires a few additional proof methods and attributes.

5.4.2 Rules and cases

The basic rule method (§3.3.2) does not differentiate any particular format of
meta-level theorems, but performs higher-order backchaining uniformly (§2.4),
with automatic lifting over local goal contexts and higher-order unification. A
slightly more specific view on rules will be required by the cases and induct
methods to be introduced later on (see §5.4.3). In particular, these methods
will produce declarations of named cases (using the general version of the inter-
pretation function M in §3.2.3). Having invoked such a method initially, users
may refer to local contexts conveniently via the case command (§3.3.1).

Taking previous cases and induction schemes as a model, the general rule for-
mat to be considered is ` A =⇒ . . . =⇒ (

∧
~x. ~B ~x =⇒ D ~x) =⇒ . . . =⇒ C.

Here A marks a certain prefix of “major premises”, its length is specified via
the consumes attribute. In practice, we merely encounter “consumes 0” for
rules associated with types, and consumes 1 for sets. The remainder consists
of several sections of “cases”

∧
~x. ~B ~x =⇒ D ~x. Each case is associated with

a name, as provided by the case-names attribute. In practice, the name co-
incides with that of datatype constructors or introductions of inductive sets,
respectively (see also §7.2.1). The particular terminology of case parameters ~x
may be exploited in some situations, notably “open” induction patterns given
in §5.4.4, the params attribute attaches specific names, e.g. those of a corre-
sponding primrec definition (see §7.2.2).
The main conclusion C and the local ones D ~x are not treated specifically
so far, although this might be relevant to the actual proof methods applied.
Recall that rules for (non-recursive) cases just have D ~x = C everywhere. In
induction patterns, the individual conclusions of D ~x typically consist of the
particular “constructor” schemes of the underlying structure, with universal
inductive parameters actually occurring in D ~x, and apart from some existential
ones covered by the assumptions ~B ~x only.

124 CHAPTER 5. Advanced natural deduction

Rules that have been decorated by such additional structural information may
be declared for automatic use with the corresponding methods. Isabelle/Isar
provides separate cases and induct attributes, each one supports either type or
set rules: “cases type: c”, “cases set : c”, “induct type: c”, “induct set : c”. See
also [Wenzel, 2001a] for further details on any of these attributes.
Users rarely need to declare rules themselves, but may rely on the existing
Isabelle/HOL environment to take care of this for the standard definitional
concepts, like inductive and datatype (see §7.2.1), or typedef (see §7.1.2).
Nevertheless, rules need to be redeclared occasionally, e.g. see the modified
representations involved in quotient types and rational numbers in chapter 9.

5.4.3 Proof methods

The cases and induct methods provide a uniform interface to case analysis and
induction over types and sets, based on appropriate rule declarations in the
current context (§5.4.2). Specific support is provided for implicit selection of
rules, separate instantiations, and symbolic case names for use with the case
command (§3.3.1). These declarations accommodate succinct specification of
standard proof patterns to be covered later on (see §5.4.4 and §7.2.1).
We refrain from detailed definitions of the cases and induct methods. Essentially
they provide a heavily sugared view of the basic rule method (§3.3.2). Here we
merely outline the basic format of method specifications, see [Wenzel, 2001a]
for further details. The syntax of both methods includes arguments for several
terms, providing an explicit instantiation of the rules involved, and guiding rule
selection from types. Rules may be also given explicitly by the user.

The full method expression “(cases ~t rule: r)” refers to case-analysis of objects
~t via rule r. In partial specifications the exact reasoning pattern is determined
as follows, depending on the type of arguments or chained facts.

facts arguments selected rule
cases classical case split
cases t :: τ standard cases of type τ

` t ∈ A cases . . . standard cases of set A
. . . cases . . . rule: r cases by rule r

Previously declared rules (§5.4.2) may be also referred as “type: c” or “set : c”.

A method expression “(induct P ~x rule: r)” is analogous to cases, but refers to
induction over elements ~x using the (optional) predicate P. Special provisions
are included to make induction work with non-atomic statements (see §5.4.5).
In partial method specifications the induction rule is determined as follows.

facts arguments selected rule
induct x :: τ standard induction of type τ

` x ∈ A induct . . . standard induction of set A
. . . induct . . . rule: r induction by rule r

5.4. Proof by cases and induction 125

Having selected (and instantiated) an appropriate rule as indicated above, these
proof methods extract the collection of named local contexts (the “cases”, cf.
§5.4.2), which are then emitted into the enclosing proof context. In order to
be usable via case later on, cases need to be fully instantiated by means of the
original method specification. Unbound schematic variables (stemming from
the original rule) may render individual cases invalid, e.g. due to a specification
of “(induct x)” that lacks the predicate instantiation.
Local parameters of cases are marked as “hidden” by default, inhibiting case to
make new parameters appear in the text out of nothing. This “pure” behavior of
the cases and induct method may be disabled by including the “(open)” option.
The practical impact on these details will be covered later on (see §5.4.4).
Facts presented to either method are consumed according to the number of
“major premises” of the rule (cf. §5.4.2), usually 0 for types and 1 for sets. Any
additional fact is inserted into the goal verbatim before applying the rule. This
allows facts to be split across cases/induct and a suitable followup method, as
in the common idiom “by cases auto” (see also chapter 10 for applications).

5.4.4 Common patterns of cases and induction

We now reconsider a few basic patterns of proof by cases and induction (cf.
§5.4.1), this time using the general infrastructure provided by the specific proof
methods introduced before. See chapter 7 for further concrete schemes emerg-
ing from the particular environment of Isabelle/HOL. Plenty of examples are
provided by existing Isabelle/Isar applications, e.g. see chapter 9 and chapter 10.

Classical case-distinction

In the following proof pattern we perform classical case-distinction succinctly,
without naming the case-split rule explicitly as before (§5.4.1).

have C

proof cases

assume A

thus ?thesis 〈proof 〉
next

assume ¬ A

thus ?thesis 〈proof 〉
qed

Apart from stating local assumptions in the text, we may use the infrastructure
of symbolic cases provided by the specific proof method setup (cf. §5.4.3). This
requires the proposition to be specified beforehand. Below the facts emerging
from the cases True and False have been included in the text. Recall that any
facts emerging from “case a” happen to be named after a as well (cf. §3.3.1).

126 CHAPTER 5. Advanced natural deduction

have C

proof (cases A)

case True — True = `A

thus ?thesis 〈proof 〉
next

case False — False = `¬ A

thus ?thesis 〈proof 〉
qed

The latter version appears as slightly more economic for large propositions, since
it requires only a single occurrence of A in the text. On the other hand, that
symbolic form turns out as as less comfortable in common situations where A
is actually quite simple anyway, e.g. an equation x = y. Here it is more lucid
to spell out the individual cases explicitly as before.

have C

proof cases

assume x = y

thus ?thesis 〈proof 〉
next

assume x 6= y

thus ?thesis 〈proof 〉
qed

Other case distinctions require to name a suitable rule, such as the one for linear
orders ` (x < y =⇒ C) =⇒ (x = y =⇒ C) =⇒ (y < x =⇒ C) =⇒ C.

have C

proof (cases rule: linorder-cases)

assume x < y

thus ?thesis 〈proof 〉
next

assume x = y

thus ?thesis 〈proof 〉
next

assume y < x

thus ?thesis 〈proof 〉
qed

Again, we may rephrase that proof using symbolic case names (stemming from
the linorder-cases rule), together with a full instantiation given beforehand.

have C
proof (cases x y rule: linorder-cases)

case less — less = ` x < y
thus ?thesis 〈proof 〉

next
case equal — equal = ` x = y
thus ?thesis 〈proof 〉

next

5.4. Proof by cases and induction 127

case greater — greater = ` y < x
thus ?thesis 〈proof 〉

qed

Structural cases

Structural case-analysis typically involves a canonical discrimination of elements
of inductive sets or types, according to the introduction schemes or constructors
given in the original definition (see §7.2.1 for Isabelle/HOL specifics). The
subsequent patterns discriminate over the cases of natural numbers according
to the inductive structure of 0 and Suc. The first version below merely uses
“(cases n)” as a succinct specification of that mode of reasoning, being slightly
more abstract than “(rule nat .exhaust)” encountered before (§5.4.1).

have C

proof (cases n)

assume n = 0

thus ?thesis 〈proof 〉
next

fix m assume n = Suc m

thus ?thesis 〈proof 〉
qed

Alternatively, we may invoke the symbolic case names associated with this rule.
The names happen to be those of the datatype constructors.

have C

proof (cases n)

case 0

thus ?thesis 〈proof 〉
next

case Suc

thus ?thesis 〈proof 〉
qed

Recall the standard policy of cases is to hide any local parameters emerging in
the individual cases (§5.4.3). The assumption introduced for the Suc is some-
thing like n = Suc m?, for some hidden parameter name m?. For syntactic
reasons there is no way to refer to that term directly, although the correspond-
ing fact Suc = ` n = Suc m? is readily available, e.g. it may contribute to an
abstract existential conclusion as follows.

case Suc

hence ∃m. n = Suc m ..

By including the “(open)” option in cases the local parameters from the original
rule become available in the text. This form assumes that the terminology of
parameters has been declared beforehand in a sensible manner (using the params
attribute, cf. §5.4.2). For the type of natural numbers, parameters of cases

128 CHAPTER 5. Advanced natural deduction

are derived from type names of constructor arguments, due to the datatype
package of Isabelle/HOL (see also §7.2.1).

have C

proof (cases (open) n)

...

case Suc

hence n = Suc nat .

thus ?thesis 〈proof 〉
qed

Here the parameter nat might appear as slightly unpleasant, both from its actual
name and the way it emerges implicitly from the “case Suc” command. Essen-
tially, this is the same problem as with open of modules in ML (e.g. [Paulson,
1991]) where previous definitions may intrude the current context unexpectedly.
On the other hand, the implicit contexts stemming from individual rules in Isar
are usually much smaller than ML library structures. Furthermore, the situa-
tion is generally better for inductive set definitions, where parameter names
are derived from the original definition given by the user (see §7.2.1); primrec
works in a similar fashion (see §7.2.2), although the rule needs to be referenced
explicitly in the method specification.
Nevertheless, the “(open)” option could be considered harmful in many ap-
plications of cases. Interestingly, it may be avoided altogether in an elegant
fashion by using case with obtain (see below). The situation is more subtle
for induction, with (universal) parameters occurring in conclusions as well.

Cases and generalized elimination

Case-analysis rules consist of several clauses of the form
∧
~x. ~B ~x =⇒ C where

the local parameters ~x do not occur in the local conclusion C, which also happens
to be the same as the ultimate result (cf. §5.4.2). This particular scoping of
parameters amounts to an (eliminated) existential statement, similar to the
ones encountered before in “generalized elimination” via obtain (cf. §5.3). In
fact, obtain may get used together with instances of case emerging from plain
case-analysis to some advantage. We illustrate this by another version of the
structural case-analysis on natural numbers.

have C

proof (cases n)

...

case Suc

then obtain m where n = Suc m ..

thus ?thesis 〈proof 〉
qed

5.4. Proof by cases and induction 129

Here “case Suc” produces again ` n = Suc m?, with a hidden existential
parameter m? (§5.4.3). The result is used in the subsequent soundness proof of
obtain, according to the standard existential introduction pattern (cf. §5.3.3).
As a consequence, we gain control over the terminology of parameters in the
static proof text, rather than implicitly via case used with “(cases (open) . . .)”.
At first sight, we seem to have achieved very little compared to the more direct
pattern of “fix m assume n = Suc m” seen before. Indeed the present tech-
nique of case/obtain really pays off in applications involving large case-analysis
rules, typically those stemming from inductive sets with many side-conditions,
or considerable structural overhead of the elements involved (tuples etc.). In
such situations the original formulation of the local context is actually only of
marginal interest. So it is better avoided in the proof text altogether in order
to avoid excessive details distracting the reader.
The interesting properties emerging from a particular case are typically imme-
diate consequences, after suitable simplification of superficial structure. This
typically eliminates most parameters and assumptions in the first place, achiev-
ing important gain of overall readability. See chapter 10 for realistic applications
of this technique; below we merely hint at such patterns in an abstract manner,
essentially recounting a generalized elimination scheme already seen in §5.3.3.

case c

— ≈ “fix x? y? z? assume (a, b, c) = (x?, f y?, z?) and P (f y?) and . . .”

then obtain d where b = f d and P b by simp

Here the soundness proof of obtain is again of the introduction form (§5.3.3),
with the proof method simp taking care of obvious syntactic simplifications of
tuple structures. As already pointed out earlier, this is an instance where the
eliminated notion of existential statements of obtain considerably reduces the
need of powerful reasoning tools. Explicit ∃ quantifiers in the statement would
usually demand more sophisticated proof tools for first-order logic, like Isabelle’s
blast or auto instead of plain simp (see also §7.3).
Also note that the present case/obtain pattern may serve as a viable re-
placement for many incidents of Isabelle tactic scripts involving the mk_cases
feature [Nipkow et al., 2001] (the same is available in the tactic emulation
of Isabelle/Isar via the inductive-cases command and the ind-cases method
[Wenzel, 2001a]). The above Isar pattern is able to supplant such special ML
tools, merely using the existing proof elements of case, obtain, and “by simp”.

Structural induction

Common structural induction over datatypes is presented as an introduction
pattern of the induct method, merely requiring a syntactic instantiation. For
the particular datatype of natural numbers this coincides with common forms
of “mathematical induction”.

have P n

130 CHAPTER 5. Advanced natural deduction

proof (induct n)

show P 0 〈proof 〉
next

fix n assume P n

thus P (Suc n) 〈proof 〉
qed

Alternatively we may refer to symbolic cases by giving a full instantiation and
the “(open)” option. Note that in Isabelle/HOL the standard terminology of
the parameter in mathematical induction is n, rather than the default one of
nat imposed by the datatype package (see also §7.2.1).

lemma P (n::nat)

proof (induct (open) P n)

case 0

thus P 0 〈proof 〉
next

case Suc

thus P (Suc n) 〈proof 〉
qed

In informal mathematics one encounters two different styles of introducing the
local assumption in the induction step. The active style goes like “now assume
that P n holds (for an arbitrary but fixed n)”, which closely corresponds to our
previous formulation of “fix n assume P n”. In contrast, the passive style is
something like “we already have P n (due to the induction hypothesis)”. The
latter may be expressed nicely in the case version of induction as follows.

case Suc

have P n by assumption — “passive” assumption

thus P (Suc n) 〈proof 〉

Recall that proper assumptions must be introduced before any corresponding
show (§5.2.1). This restriction does not appear to hold for passive ones since
the context has already been augmented earlier by a previous case element.

case Suc

show P (Suc n)

proof −
have P n by assumption — late reference of “passive” assumption

thus ?thesis 〈proof 〉
qed

Here we have used “by assumption” for clarity; plain “.” works as well since
the methods assumption and this coincide in pure introduction usage (§3.3.2).

Rule induction

By “rule induction” we refer to the canonical induction schemes emerging from
inductive sets (see also §7.2.1). The introduction rules given there act very

5.4. Proof by cases and induction 131

much like constructors of an inductive type, although additional conditions may
be included in set constructions. Furthermore, there are explicit membership
judgments involved as separate facts, so induction appears as an elimination
pattern. Subsequently, we recast the immediate pattern of rule induction of
§5.4.1 (involving the set of finite sets) by using the generic induct method.

assume A ∈ Finites

hence P A

proof induct

show P {} 〈proof 〉
next

fix a :: ′a and A :: ′a set

assume A ∈ Finites and P A

thus P (insert a A) 〈proof 〉
qed

Here we have merely replaced the original “(rule Finites.induct)” method by
plain induct. In the next version we actually use the symbolic cases provided
by that method as well. Again we need to give a full instantiation beforehand
(cf. §5.4.3) and declare local parameters as “(open)”.

assume A ∈ Finites
hence P A
proof (induct (open) P A)

case emptyI
thus P {} 〈proof 〉

next
case insertI
thus P (insert a A) 〈proof 〉

qed

Avoiding unexpected parameters

The “(open)” form of induction patterns involving symbolic cases is often inap-
propriate, local parameters need to be specified more explicitly in the text to
prevent confusion of readers. In principle, this could be achieved via more elabo-
rate versions of the initial method invocation, using the params attribute (§5.4.2)
as in “(induct (open) . . . rule: r [params x . . .])”. This turns out as slightly
too impractical for direct use, although the primrec package of Isabelle/HOL
already provides renamed rules for immediate use (see also §7.2.2).
Recall that the situation is simpler for non-recursive cases where parameters
may only occur existentially. Using case together with obtain as demonstrated
before, hidden existential parameters may be easily extracted in the text.

Subsequently, we propose a different approach to explicit parameter specifica-
tion that appears to be suitable for inductive situations as well. Concerning the
induct method itself parameters are again hidden, but may be named on invo-
cation of a slightly enhanced version of case. The following pattern illustrates

132 CHAPTER 5. Advanced natural deduction

this idea (this proof does not yet work with the present version of Isabelle/Isar).

have P n

proof (induct P n)

case 0

thus P 0 〈proof 〉
next

case (Suc n) — parameters included in case specification

thus P (Suc n) 〈proof 〉
qed

An extended case specification of the form “(c ~x)” shall refer to a particular
terminology to be used in that instance of case c in the text.
The above pattern appears to be quite promising, but still needs to be evaluated
in concrete examples, including large inductive definitions (see §7.2.1).

5.4.5 Induction with non-atomic statements

The issue of induction with non-atomic rule statements is very important for
non-trivial applications, due to additional conditions and variable parameters
that are typically required in “strengthened” inductive statements (e.g. see the
exposition in [Nipkow and Paulson, 2001]). Here we consider the standard
mathematical induction rule P 0 =⇒ (

∧
n. P n =⇒ P (Suc n)) =⇒ P n, which

gives rise to the following proof pattern (§5.4.4).

have P n

proof (induct n)

show P 0 〈proof 〉
next

fix n

assume P n

show P (Suc n) 〈proof 〉
qed

On the other hand, non-atomic rule statements may be established in Isar as
follows, essentially just by replacing

∧
and =⇒ of the proposition by fix and

assume/show in the proof text (cf. §5.2.5).

have
∧

x . A x =⇒ C x

proof −
fix x

assume A x

show C x 〈proof 〉
qed

Both of these techniques may be combined as follows, in order to establish a
non-atomic statement by induction.

5.4. Proof by cases and induction 133

have
∧

x . A x n =⇒ C x n

proof (induct n)

fix x

assume A x 0

show C x 0 〈proof 〉
next

fix x and n

assume
∧

x . A x n =⇒ C x n — induction hypothesis as a rule

assume A x (Suc n) — assumption of the concluded rule

show C x (Suc n) 〈proof 〉 — conclusion of the concluded rule

qed

Here the two seemingly orthogonal concepts of induction and non-atomic propo-
sitions appear to be fully compositional. In retrospective, nothing special seems
to be happening, the Isar proof just turns out as one might have expected in the
first place. On the other hand, this rather painless approach to induction with
non-atomic statements is actually a result of careful treatment of these issues
within the environment of structured proof texts.
Existing tactical provers, most notably Isabelle [Paulson and Nipkow, 1994] and
traditional HOL systems [Gordon and Melham, 1993], need to impose quite a
few further technical details on users (as illustrated below). The Isabelle/HOL
tutorial [Nipkow and Paulson, 2001] includes lengthy instructions for prospective
users to get “strengthened” induction statements accepted by the system. In
practice, such superficial formal overhead causes considerable distractions from
the main problem of figuring out suitable generalizations of inductive arguments.

Subsequently, we illustrate the problems encountered in tactical induction proofs
by means of Isar proof texts. First of all, we observe that the induction scheme
may not just be applied naively to the original rule statement, since higher-order
backchaining involved here is monotonic wrt. the goal context (§2.4).

have
∧

x . A x n =⇒ C x n

proof (rule nat .induct) — monotonic rule application

fix x assume A x n — unchanged rule context

{
show C x 0 〈proof 〉

next

fix m assume C x m — limited induction hypothesis

show C x (Suc m) 〈proof 〉
}

qed

Here the normal behavior of rule application got in our way, as we have actu-
ally intended to get access to the original context of

∧
x . A x n =⇒ . . . within

the induction, rather than as static assumptions outside (even over different
parameters). The established technique to fix this misconception in unstruc-
tured tactic scripts is to rephrase the original rule as an atomic proposition via

134 CHAPTER 5. Advanced natural deduction

object-level ∀ /−→ connectives.

have ∀ x . A x n −→ C x n

proof (rule nat .induct)

show ∀ x . A x 0 −→ C x 0 〈proof 〉
next

fix n

assume ∀ x . A x n −→ C x n

show ∀ x . A x (Suc n) −→ C x (Suc n) 〈proof 〉
qed

While this looks fine in theory, it usually causes a considerable amount of addi-
tional formal noise in practice, for the following reasons.

1. ∀ /−→ connectives need to be stripped by explicit introductions before
entering the actual proof of an inductive conclusions.

2. ∀ /−→ connectives need to be eliminated from the induction hypothesis
to become usable in common situations.

3. The final result needs to be modified to recover the originally intended
rule statement.

There is even a fourth (extra-logical) problem for the writer during development.
Typically, the particular context to be passed through an induction is subject
to some experimentation, until a properly strengthened statement has been
figured out. Switching back and forth between

∧
/=⇒ and ∀ /−→ happens to

be quite cumbersome in Isabelle due to different syntactic precedences, so proper
placement of parentheses is imposed on the writer as well.

Below we illustrate the first three (formal) issues by the following proof pattern.
Recall that structural decomposition shown statically in the Isar text below
would be hidden in extraneous tactic invocations in an unstructured proof script.

have ∀ x . A x n −→ C x n

proof (rule nat .induct)

show ∀ x . A x 0 −→ C x 0

proof — (1)

fix x

show A x 0 −→ C x 0

proof — (1)

assume A x 0

show C x 0 〈proof 〉
qed

qed

next

fix n

assume ∀ x . A x n −→ C x n

5.4. Proof by cases and induction 135

hence
∧

x . A x n −→ C x n .. — (2)

hence
∧

x . A x n =⇒ C x n .. — (2)

show ∀ x . A x (Suc n) −→ C x (Suc n)

proof — (1)

fix x

show A x (Suc n) −→ C x (Suc n)

proof — (1)

assume A x (Suc n)

show C x (Suc n) 〈proof 〉
qed

qed

qed

note mp [OF spec [OF this]] — (3)

— this = `
∧

x . A x n =⇒ C x n

The special attribute rule-format of Isabelle/Isar’s tactic emulation [Wenzel,
2001a] simplifies phase (3) at the least. Concerning introductions (1) and elim-
inations (2), unstructured tactic scripts would not be blown up that excessively
like the above text, but the same inherent complexity is still there. Users of
tactical proving have suffered the additional overhead of simulating induction
over rule statements for several years, but we certainly would not like to have
that way persist in proper Isar. As illustrated here, any superficial formal noise
immediately affects Isar proof texts in an unacceptable manner.
Fortunately, the whole affair is quite easy to accommodate in proper Isar, once
that the compositional version of induction with non-atomic statements demon-
strated initially has been recognized as the right way. The key observation is
that induct merely needs to provide a filter for plain rule, in order to internalize
a rule statement temporarily. This is how induct actually works in Isar, ignoring
the separate issues of rule selection, instantiation, and providing named cases
already covered in §5.4.3.

induct = (unfold atomize, rule r , fold atomize)

Here atomize contains ` (
∧

x . P x) ≡ ∀ ?x . P x and ` (A =⇒ B) ≡ A −→? B,
transforming any meta-level

∧
/=⇒ connectives to hidden reflections ∀ ?/−→?

within the object-logic (private copies of ∀ /−→). As a consequence, the actual
application of the induction rule r appears to operate on an atomic proposition.
Afterwards the ∀ ?/−→? connectives are again expanded, in order to recover the
presentation as a rule.
The latter technique assumes that occurrences of the induction predicate are
in proper “rule positions”, merely surrounded by

∧
/=⇒. The rules of existing

Isabelle/HOL packages, most notably datatype and inductive (see §7.2.1),
already follow this form. Only a few individual rules of the Isabelle/HOL library
(see also §7.4) need to be adapted to become usable with rule statements, e.g.
(
∧

n. ∀m. m < n −→ P m =⇒ P n) =⇒ P n which has to be rephrased as
(
∧

n. (
∧

m. m < n =⇒ P m) =⇒ P n) =⇒ P n.

136 CHAPTER 5. Advanced natural deduction

The above definition of the induct method appears as a rather obvious solution
to a long standing inconvenience of classic Isabelle. Two key observations make
our scheme practically useful in Isar proof texts, as opposed to unstructured
tactic scripts. Firstly, Isar is able to treat non-atomic assumptions and goals
in a uniform manner (§5.2.5), while Isabelle tactics have a strong bias towards
flattened proof problems. Secondly, rule statements may be easily formulated as
separate local facts in Isar, while tactic scripts operate on a single large “rule”
that encodes the full proof problem with assumptions and intermediate facts,
so the range of the actual inductive statement would not be delimited clearly.

We see that the additional effort of structured proof composition eventually pays
off by significant simplification of typically subtle inductions with generalized
statements, both from the conceptual and technical point of view. In particular,
the common way to represent natural deduction proof schemes at the meta-level
via

∧
/=⇒ carries over to “advanced” inductive problems as well. The former

attempt to encode rules temporarily within the object-logic essentially gives up
the fundamental conveniences of the generic Isabelle framework in higher-order
backchaining of meta-level expressions (§2.4). That slightly strange exceptional
case falling back to the object-logic for induction is apt to diminish the elegance
of the original Isabelle framework [Paulson, 1989] [Paulson, 1990] unnecessarily.

5.5 Discussion

5.5.1 Context manipulations in Mizar

Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999] pro-
vides a number of proof outline commands for procedural transformations of
contexts (and goals). We have already covered the propositional case in §4.2.4,
the issue of adequate treatment of quantifiers is even more important. Here
we consider the generally critical scheme of ∃ x . P x =⇒ ∃ y . Q y, exploring
the particular instance of ∃ x . ∀ y . R x y =⇒ ∀ v . ∃ u. R u v. The following
Isar proof documents a formulation in basic natural deduction (cf. chapter 4),
without any of those “advanced” techniques considered previously.

lemma ∃ x . ∀ y . R x y =⇒ ∀ v . ∃ u. R u v

proof

fix v

assume ∃ x . ∀ y . R x y

thus ∃ u. R u v

proof

fix u

assume ∀ y . R u y

hence R u v ..

thus ?thesis ..

qed

qed

5.5. Discussion 137

In Isar the structure of basic natural-deduction proofs directly corresponds to
that of the logical statements involved. This results in the typical nesting of
sub-proofs encountered above.
Mizar provides separate commands to dig into complex statements in a sequen-
tial manner, notably let for ∀ introduction, take for ∃ introduction, consider
for ∃ elimination from an intermediate result, and given for ∃ elimination from
an existential premise. As in the propositional case (cf. §4.2.4), we follow the
simplified view of Mizar operations here according to [Wiedijk, 2000]. Authen-
tic Mizar treats quantifiers by hardwired classical proof principles. There is no
official documentation available how this works exactly. Critical users cannot
even find out for themselves, since the sources of Mizar are unavailable.
For the present example, we use the stripped-down version Mizer-MSE [Hoover
and Rudnicki, 1996] [Prazmowski and Rudnicki, 1993] [Mizar MSE]. Unlike full
Mizar, the MSE version supports abstract notation of first-order logic, which
simplifies our presentation. On the other hand, it lacks the given variant of ∃
elimination, so we need to use plain consider here.

environ

reserve x, y, u, v for a;

begin

(ex x st for y holds P[x, y]) implies (for v holds ex u st P[u, v])

proof

assume A: ex x st for y holds P[x, y];

let v be a;

consider u being a such that B: for y holds P[u, y] by A;

C: P[u, v] by B;

thus ex u st P[u, v] by C;

end;

Here the assumption A gets used later on to obtain the local parameter u via ∃
elimination of consider. Mizar needs to keep a fixed order of transformations
when digging into a nested statement. Consequently, the intermediate let ele-
ment may not be moved out of the way in order to link the assume and consider
lines more directly. The fact B needs to be named explicitly as well, since Mizar
treats the result of consider as a special case, disallowing immediate linking
via then, for example. In fact, the Mizar-MSE version does not support Mizar’s
linked elements then/hence/hereby at all. For the very same reason, we also
require the C label above in Mizar-MSE, where full Mizar could have employed
hence instead of thus to use the previous fact directly.
We observe that Mizar tends to introduce some amount of formal noise due to
slightly inflexible arrangement of its basic proof outline elements. In contrast,
Isar proof contexts are invariant wrt. a number of canonical algebraic laws, like
permuted assumptions, or commuted parameters and assumptions according to
HHF normal forms (cf. §2.4.1 and §5.2.1).
On the other hand, Isar’s non-procedural approach of proof contexts may require
excessive nesting of sub-proofs in some situations. In practice, additional nesting

138 CHAPTER 5. Advanced natural deduction

is often due to generalized elimination patterns, which may be accommodated
more adequately by the derived obtain element (§5.3). Thus we may rephrase
the present example in Isar without any nesting, but are still able to exploit
the flexible treatment of context elements to arrange the flow of facts more
naturally. This happens to keep the text free from explicit references to facts
and rules.

lemma ∃ x . ∀ y . R x y =⇒ ∀ v . ∃ u. R u v

proof

fix v

assume ∃ x . ∀ y . R x y

then obtain u where ∀ y . R u y ..

hence R u v ..

thus ∃ u. R u v ..

qed

Even though Isar is quite far removed from direct manipulations of proof con-
texts (or goals), the particular technique of calculational reasoning provides a
slightly different paradigm of implicit transformations of results, albeit in a very
disciplined manner (see chapter 6).

5.5.2 Second-order schemes in Mizar and DECLARE

Both Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999]
and DECLARE [Syme, 1997a] [Syme, 1998] [Syme, 1999] treat second-order
proof schemes like induction as a special case, although for different reasons.

Mizar is based on classical first-order logic, together with a hardwired axioma-
tization of typed set-theory. There is a special sub-language to handle second-
order rules, including the top-level goal statement of scheme, and the from
element for application of rule schemes in proofs. For example, the principle
of mathematical induction is stated in article #4 (NAT_1) of [Mizar library] as
follows.

scheme Ind P[Nat] :

for k holds P[k]

provided

A1: P[0] and

A2: for k st P[k] holds P[k + 1]

proof ... end;

Having decomposed the main statement as indicated above, the proof proceeds
by using standard proof elements of Mizar. The body will refer to plain first-
order statements only, since rule schemes may not be nested deeper. Subse-
quently we give an example of scheme application in Mizar, taken from article
#676 (DYNKIN) of [Mizar library]. The from language element is used here with
the same rule Ind of mathematical induction.

5.5. Discussion 139

theorem fin:

for n holds PSeg(n) is finite

proof

A0: PSeg(0) is finite by ALGSEQ_1:11;

A1: for n st PSeg(n) is finite holds PSeg(n+1) is finite

proof

let n;

assume PSeg(n) is finite; then

PSeg(n) U {n} is finite by FINSET_1:14;

hence thesis by ALGSEQ_1:17;

end;

thus thesis from Ind(A0,A1);

end;

This example represents the common idiom of induction in Mizar. Scheme
application only works with existing facts provided as named arguments, as
encountered in “from Ind(A0,A1)” above. So induction is restricted to forward
reasoning, with explicit references to previous facts. Incidently, this extreme
style of forward induction is also the preferred one of the (informal) discipline
of writing long and detailed proof outlines proposed by [Lamport, 1994].

Isar is more flexible in several respects. First of all, the underlying framework
supports complex rules directly (§2.2), without any artificial restriction to first-
order logic. The Isar proof language accommodates this adequately, by treating
non-atomic statements uniformly in the text (§5.2.5 and §5.4.5).
Furthermore, the freedom to choose the direction of reasoning freely may in
principle be applied to “second-order” patterns as well, although our preferred
style of induction is in backwards manner. Isar admits the following variations
of mathematical induction, ranging from an emulation of Mizar, over a slightly
odd mixed form, to our standard one of backward reasoning (cf. §5.4).

have 0: P 0 〈proof 〉
have Suc:

∧
n. P n =⇒ P (Suc n)

proof −
fix n

assume P n

thus P (Suc n) 〈proof 〉
qed

from 0 and Suc have P n by (rule nat .induct)

have P 0 〈proof 〉
hence P n

proof (rule nat .induct)

fix n

assume P n

thus P (Suc n) 〈proof 〉
qed

140 CHAPTER 5. Advanced natural deduction

have P n

proof (induct n)

show P 0 〈proof 〉
next

fix n assume P n

thus P (Suc n) 〈proof 〉
qed

The backward version appears to be more conforming to the main-stream style
of induction in mathematical proofs (cf. §5.4.4). Its “analytical” presentation
in top-down fashion is especially well-suited for large-scale applications that de-
mand additional infrastructure like symbolic cases (§5.4.2), or proper treatment
of non-atomic inductive predicates (§5.4.5). The specific Isar infrastructure
given in §5.4 requires the induction pattern to be specified in advance, in order
to enable succinct presentation of the corresponding sub-proofs.

DECLARE [Syme, 1997a] [Syme, 1998] [Syme, 1999] follows a similar idea of
top-down induction. The system provides a separate sub-language for rule spec-
ifications, by the builtin proceed element for “second-order schema application
for inductive and other arguments”. The following example is from the JavaS
case-study performed in DECLARE [Syme, 1998, part II].

thm array-alloc-conforms-lemma

if TE wf_tyenv <TE_wf>

TE |- VT(st,ext) wf_vartype <st_wf>

(val1,heap1) = val_alloc(heap0,st,dims,ext) <alloc>

TE |- heap0 heap_conforms <heap0_conforms>

then heap0 FPSUBFUN heap1 &

TE |- heap1 heap_conforms &

(TE,heap1) |- val1 wconforms_to VT(st,LEN(dims)+ext) <goal>;

proceed by structural induction on dims with dims,heap0,heap1,val1 variable;

case NIL dims = [];

qed by . . .;

case CONS

dims = dim × dims’ <dims>;

. . .
end;

Here the rule has been specified as “structural induction” over lists (which
is the type of dims), while the annotation “with . . . variable” refers the se-
lection of universal parameters in the induction. DECLARE performs implicit
quantification of the inductive statement as specified. The “scope” of the re-
sulting induction predicate is determined automatically, covering exactly those
parts of the current proof context that mention any the parameters. This dis-
cipline enables DECLARE to reason about top-level sequents inductively.

DECLARE implements specific support for common induction patterns as part

5.5. Discussion 141

of the primary language. This conforms to its overall approach of a specialized
system for reasoning about operational semantics [Syme, 1998]. In Isar the aims
and general philosophy are quite different, though. Great care has been taken
in order to provide a generic framework for high-level natural-deduction proofs,
with only minimal instantiations required to support many different kinds of
applications. Any such advanced concepts are kept as close to pure logical
concepts as sensible.
Concerning the particular case of induction proofs, this means that in Isar local
parameters and assumptions are just given via meta-level connectives

∧
/=⇒

in the original claim, instead of separate language elements in DECLARE. The
induct method of Isar passes exactly the given rule statement through the in-
duction (§5.4.5), without any further implicit operations involved.

5.5.3 Generalized case-splitting

Two recurrent patterns of advanced natural deduction have been treated specif-
ically so far: generalized elimination via obtain (§5.3), and an infrastructure
for rules involving case-splitting (§5.4). Furthermore, we have already pointed
out common use of obtain together with case (§5.4.4). The question remains
if case-splitting may be incorporated into obtain directly as well.
Speaking in terms of the underlying framework of minimal higher-order logic
(§2.2), obtain corresponds to singleton case-analysis (with optional existential
parameters) expressed by the reduction statement

∧
C . (

∧
~x. ~ϕ1 . . . ~ϕn =⇒

C) =⇒ C (cf. §5.3.1 and §5.3.2). From the meta-logical perspective, the idea
underlying obtain could be easily generalized to any number of branches. This
would essentially result in generalized case-splitting, which we shall associate
with the hypothetical obtain-cases element as follows.

obtain-cases
a: ~x where A1 ~x and A2 ~x . . . |
b: ~y where B1 ~y and B2 ~y . . . | . . .
〈proof 〉

case a
hence C 〈proof 〉

next
case b
hence C 〈proof 〉

next
...

Here the initial soundness proof would establish the multi-branch reduction
statement of this particular case-split with separate existential parameters. The
subsequent portions of the text may invoke the individual alternatives via case,
and need to establish a common result C eventually.
Unfortunately, the existing Isar proof text processing scheme (§3.2.3) does not

142 CHAPTER 5. Advanced natural deduction

support this kind of reasoning pattern as a context element like obtain (§5.3).
The Isar/VM interpreter is essentially bound to a linear operation, working in-
crementally from left to right. For obtain-cases, the discharge operation of the
underlying assm primitive (§3.2.1) would need to collect the results of several
independent pieces of text, before being able to apply the covering statement
proven beforehand.

Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999] pro-
vides the language element “per cases” for this kind of isolated multi-branch
reasoning, although it lacks local existential parameters. In fact, this is the only
way that case-splitting may be performed in Mizar in the first place. The other
logical manipulations covered so far (§4.2.4 and §5.5.2) operate in a strictly lin-
ear fashion. Recall that Mizar may not just apply arbitrary natural deduction
rules like Isar’s basic “proof (rule r)” form.
The following example of case-splitting in Mizar has been taken from article
#638 (polynom2) of [Mizar library]. Incidently, this fragment uses purely for-
ward reasoning at the outer level (via “now . . . end”). The ultimate result is
contradiction, but this need not be stated as a goal beforehand.

now per cases;

case N() = 0;

hence contradiction by A4;

case N() <> 0;

then 1 <= N() by RLVECT_1:99;

then A6: Seg 1 c= Seg N() by FINSEQ_1:7;

1 ∈ (Seg 1) by FINSEQ_1:4,TARSKI:def 1;

hence contradiction by A5,A6;

end;

hence contradiction;

end;

The soundness proof required by “per cases” merely needs to establish a dis-
junctive statement (due to the lack of existential parameters in Mizar’s case-
splitting primitive). The empty soundness proof above (cf. the semicolon after
“per cases”) involves the classical principle of tertium-non-datur, which is al-
ready treated as “obvious” by Mizar’s builtin verifier.
Concerning Isar, we have already observed that forward-style case-analysis like
this is not directly supported by the existing language framework. Nevertheless,
we may just use the most basic instance of the cases method applied to an initial
claim, while still achieving a reasonable presentation (cf. §5.4). Thus the above
Mizar text may be rephrased in Isar as follows.

have False

proof cases

assume n = 0

thus False 〈proof 〉

5.5. Discussion 143

next

assume n 6= 0

...

thus False 〈proof 〉
qed

Interestingly, most practical applications of “logical” case-analysis in Mizar and
Isar are actually of this simple tertium-non-datur form. In Isar there is another
good portion of “structural” case-analysis of inductive sets and types (see also
§7.2.1) that typically emerge in computer-science applications (e.g. chapter 10).
Mizar does not offer any specific support in the latter respect. In fact, there are
very few such examples in [Mizar library], which turn out as slightly low-level
as users have to simulate the underlying inductive structures by raw elements
of first-order logic and set-theory.

DECLARE [Syme, 1997a] [Syme, 1998] [Syme, 1999] provides a very general
cases element, which refers to the “decomposition and enrichment” primitive
of the system. This mechanism is quite powerful, admitting to split the proof
context into several disjunctive parts, each introducing a number of local as-
sumptions over (optional) existential parameters. Thus complex statements of
the form (∃ ~x. A1 ~x ∧ A2 ~x ∧ . . .) ∨ (∃ ~y. B1 ~y ∧ B2 ~y ∧ . . .) ∨ . . . may be
directly accommodated in DECLARE proofs. The system collects such covering
statements from the individual portions of text given by the user as “consider
~x such that A1 ~x A2 ~x . . .” elements (separated by case keywords). In con-
trast to Isar, DECLARE may achieve this relatively easily due its non-interactive
processing of proof texts.
All other context elements of DECLARE are actually derived from the cases
primitive, including local facts (have), single-ended elimination (consider with-
out surrounding cases/case), and local definitions (let) with optional pattern
matching performed within the logic. For example, local definitions work out
analogously to the Isar pattern for def given for obtain (cf. §5.3.3).

Incidently, the issue of generalized case-analysis marks a key philosophical dif-
ference of DECLARE compared to Isar. DECLARE essentially takes a few
all-inclusive primitives as a starting point, defining simpler concepts as partic-
ular instances. In Isar we have started with a generic interpretational model
of pure natural deduction proofs, and have built up a hierarchy of derived ele-
ments from the very bottom of logical foundations. In moving upwards in the
hierarchy of concepts, we have been able to preserve the logical foundations,
the operational model of incremental proof processing, and full compositional-
ity with the previous collection of language elements. In fact, this is the deeper
reason why Isar turns out as a versatile formal reasoning environment. It has
not been made to achieve a limited set of goals, but has been grown from a
sound basis to cover a large field of applications.

In conclusion we propose a slightly different pattern of case-splitting in Isar,

144 CHAPTER 5. Advanced natural deduction

based on quite primitive means of forward-reasoning with proof blocks. The
idea is to collect a number of individual results that are integrated by means of
a “magical” proof method that needs to take care of eliminating the ultimate
covering statement. This is not a first-class context element as obtain-cases
considered before.

{
fix ~x assume A1 ~x and A2 ~x

hence C 〈proof 〉
} note 1 = this

{
fix ~y assume B1 ~y and B2 ~y

hence C 〈proof 〉
} note 2 = this

from 1 and 2 have C by blast — “magical” integration performed here

In fact, this is happens to be an instance of the “big-step” reasoning paradigm
performed via automated reasoning tools, see §6.4.3 for slightly more convenient
expressions using “degenerate calculations” in Isar (avoiding explicitly named
facts like 1 and 2 above). The patterns of “degenerate calculations” presented
in §6.4.3 turn out as a fair replacement for the relatively infrequent situations
of fully general logical case-splitting encountered in practice. So the lack of
real obtain-cases in Isar is actually a rather small price for the flexible linear
interpretation model of generic natural deduction proof texts (§3.2.3).

Chapter 6

Calculational reasoning

We consider a rather general notion of calculational reasoning, in the sense of
iterated equalities and similar relations given in the proof text. Despite being
centered around natural deduction, Isar turns out to support a multitude of
calculational patterns very well. We do not require any changes to the core
concepts of Isar proof processing, but only a few derived elements added on top
of the existing framework.

The flexible and non-intrusive manner that calculational reasoning is incorpo-
rated into Isar allows free combination with existing natural deduction tech-
niques. This also demonstrates that the two proof styles need be in conflict, but
may benefit from each other.

6.1 Introduction

Calculational reasoning essentially proceeds by forming a chain of intermediate
results that are meant to be composed by basic principles, such as transitivity of
=/</≤ (or similar relations). More advanced calculations may involve substitu-
tion, which in the case of inequalities usually includes monotonicity constraints.
In informal mathematics, this kind of proof technique is routinely used in a
very casual manner. Whenever mathematicians write down sequences of mixed
equalities or inequalities, underline subexpressions to be replaced etc., then it
is very likely that they are actually doing calculational reasoning.
In fact, calculational reasoning has been occasionally proposed as simple means
to rephrase mathematical proof into a slightly more formal setting (e.g. [Back
and von Wright, 1999] [Back et al., 1997]), although this does not necessarily
include machine-checking of proofs. Observing that logical equivalence and
implication may be just as well used in calculations, some have even set out to
do away with traditional natural-deduction reasoning altogether (e.g. [Dijkstra

145

146 CHAPTER 6. Calculational reasoning

and Scholten, 1990]). The resulting discipline of writing down mathematical
proofs in a slightly formalistic manner has been found quite appealing by a
considerable number of people, albeit not by everyone.
Nevertheless, calculational reasoning offers a relatively simple conceptual basis
to build tools for logical manipulations. For example, the popular Math

∫
pad

tool supports transformations of algebraic expressions in a systematic way.
Math

∫
pad has also acquired means for formal proof checking recently [Verhoeven

and Backhouse, 1999], using PVS [Owre et al., 1996] as the backend.

Presently, we cover quite general concepts of calculational reasoning within the
Isar framework. We shall see how calculational reasoning may be expressed on
top of existing Isar concepts in a very natural manner, and how it may be used
in common proof patterns.
The most basic form of calculation in Isar is that of a transitive chain of equal-
ities laid out as follows.

have x1 = x2 〈proof 〉
also have . . . = x3 〈proof 〉
also have . . . = x4 〈proof 〉
finally have x1 = x4 .

According to the general philosophy of Isar, there is no fixed scheme for calcu-
lations implemented in an ad-hoc fashion. Instead we merely introduce a few
derived proof commands and abbreviations (notably “. . .”), in order to arrive
at very general calculational concepts that may be freely combined with the
existing natural-deduction proof language. Thus the previous example merely
turns out as a idiomatic expression within a larger space of possible expressions.
In particular, Isar calculations may be easily combined with “real” natural de-
duction elements, without having to subscribe to a fully calculational view of
logic in general (as proposed in [Dijkstra and Scholten, 1990]). As we shall point
out in further detail later on, there is no need to see calculational reasoning in
conflict with traditional natural deduction. Both proof styles are readily avail-
able in Isar, leaving the user the free choice of the most appropriate technique
in the particular situation at hand.
Speaking in terms of λ-calculus as the canonical model for natural deduction
proofs, Isar calculations correspond to “binary” composition of primary and sec-
ondary facts, with implicitly determined rules of transitivity. So we exhibit just
another concept of formal reasoning that is in principle completely redundant,
but turns out as indispensable for realistic applications (the same holds for the
advanced natural deduction elements covered in chapter 5).

Interestingly, existing tactic-based interactive proof systems such as Isabelle
[Paulson and Nipkow, 1994], HOL [Gordon and Melham, 1993], Coq [Barras
et al., 1999], PVS [Owre et al., 1996] lack immediate support for calculational
reasoning altogether. Even the most basic form of transitive chain given above
is very cumbersome to achieve via tactical reasoning.

6.2. Foundations of calculational reasoning 147

This omission has been addressed several times in the past. [Simons, 1996]
[Simons, 1997] covers specific proof tools to support calculational reasoning
within Isabelle tactic scripts. [Grundy, 1991] provides an even more general
transformational infrastructure for “window inference”. Harrison’s “Mizar mode
for HOL” simulates a number of concepts of declarative theorem proving on top
of the tactic-based HOL-Light system [Harrison, 1996b], including calculational
reasoning for mixed transitivity rules.
In formalized mathematical proof, calculations have been recognized as an im-
portant concept long ago: Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski,
1993] [Wiedijk, 1999] supports a fixed format for iterated equations, with im-
plicit application of both transitivity and general substitution rules. [Zammit,
1999a] [Zammit, 1999b] outlines a slightly more flexible version of Mizar calcu-
lations for the “SPL” language.

6.2 Foundations of calculational reasoning

6.2.1 Calculational sequences

From a syntactical point of view, the essence of a calculational proof in Isar is
that of a calculational sequence: let the set calculation be freely generated by
the constructors start : fact → calculation and continue: calculation → fact →
calculation. Apparently, any calculation represents a non-empty list of facts.
We fine-tune our notation and write canonical calculational sequences continue
(. . . (continue (start a1) a2) . . . an) concisely as a1 ◦ a2 · · · ◦ an, by suppressing
start and using left-associative infix notation ◦ for continue.

An interpreted calculational sequence shall be any result achieved by mapping
the start and continue constructors in a primitive recursive fashion. We only
consider interpretations of calculation back into fact, i.e. result : calculation →
fact ; we also fix result (start a) = a. There is now only one degree of freedom
left to specify the general case of result (c ◦ a).
The following two kinds of calculational steps will be considered within the Isar
framework:

(rule-step): specify result (c ◦ a) = r · (result c @ a) where r is a suitable
rule taken from a given context T of transitivity rules. Thus we produce a
singleton fact by applying a rule to the current calculational result taken
together with some new facts.

(accumulation-step): specify result (c ◦ a) = result c @ a, i.e. collect further
facts without applying any rule yet.

As a basic example of interpreted calculation sequences, fix the singleton set
T = {` a = b =⇒ b = c =⇒ a = c} of transitivities and only perform rule
steps; we get result (` x1 = x2 ◦ ` x2 = x3 ◦ ` x3 = x4) = ` x1 = x4. Thus

148 CHAPTER 6. Calculational reasoning

we may represent canonical chains of equations composed by plain transitivity.
Alternatively, only perform accumulation steps to achieve result (` A1 ◦ ` A2

◦ ` A3) = [` A1, ` A2, ` A3], i.e. get a number of facts collected as a separate
list. As we shall see later on, even the latter case of seemingly degenerate
calculational sequences turns out to be quite useful in practice.

6.2.2 Calculational elements within the proof language

In the next stage we investigate how to provide a proof language interface for
the user to compose calculational sequences.

At first sight, the way taken by Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muza-
lewski, 1993] [Wiedijk, 1999] seems to be the obvious one: simply invent concrete
syntax for the primitive operations of composing calculational sequences, and
make the implementation support this directly — probably with some link to
the basic mechanisms of stating and proving facts. On the other hand, such a
way of “making a system do something particular” has its inherent limitations.
Typically the yield of a certain amount of implementation effort is just the kind
of specific feature one had in mind — no more, no less.
In Isabelle/Isar we follow a different path. Instead of hardwiring calculational
reasoning into the basic language, we step back from the immediate imple-
mentation problem and figure out how the process of composing calculational
sequences may be mapped into the natural flow of reasoning in a non-intrusive
fashion. Then by adding only a few abbreviations and conventions, we shall
achieve a very general framework for calculational reasoning within Isar requir-
ing only minimal effort. Since this extension happily coexists with the remaining
Isar proof language, the resulting space of combined proof patterns contains a
large number of practically useful idioms, as shall be explored later on.

How do we actually map calculational sequences into the Isar language? First
of all, let us fix a special facts register called “calculation” to hold the current
state of the (partially interpreted) sequence the user is currently working at. The
start of a calculation shall be determined implicitly, as indicated by calculation
being empty. Whenever a calculation is finished, calculation will be reset to
await the next sequence to start. The result of a finished sequence is exhibited
to the subsequent goal statement as a chained fact; its use in the pending proof
is no longer controlled by the calculational process.
Furthermore, we wish to exploit Isar’s inherent block structure to support nested
calculations. To this end, any update operation on calculation shall track the
current nesting level, in order to commence a new sequence whenever a new
block has been entered. Thus any number of calculational sequences may coexist
at different levels of block structure.

We now define derived Isar proof commands also, finally, moreover, and
ultimately to maintain the calculation register as outlined above. The above
treatment of block structure is left implicit here.

6.2. Foundations of calculational reasoning 149

also = note calculation = this initial
also = note calculation = r · (calculation @ this) for r ∈ T

finally = also from calculation
moreover = note calculation = calculation @ this

ultimately = moreover from calculation

Here the two main elements are also and moreover, corresponding to the “rule-
steps” and “accumulate-steps” introduced before. The accompanied variants
finally and ultimately finish the current sequence after performing a final
step, and exhibit the result. Due to the forward chaining involved in the from
operation, the next command has to be a goal statement, such as have or show
(cf. the Isar language semantics given in §3.2.3).
This slightly peculiar definition of derived Isar proof commands is essentially suf-
ficient to support calculational reasoning. Only one additional tweak is required
in practice, namely the special term binding “. . .” that refers to the argument
term of the most recent explicit fact statement (the argument of a curried infix
expression x op y refers to its right-hand side y). This enables the user to refer to
the most relevant bits of the previous calculational statement succinctly. Note
that a similar element has already been present in Harrison’s “Mizar mode for
HOL” [Harrison, 1996b], while actual Mizar [Rudnicki, 1992] [Trybulec, 1993]
[Muzalewski, 1993] [Wiedijk, 1999] uses “.=” as a special notational device.

We may now rephrase the two basic examples of calculational sequences given
in §6.2.1 within the Isar language.

have x1 = x2 〈proof 〉
also have . . . = x3 〈proof 〉
also have . . . = x4 〈proof 〉
finally have x1 = x4 .

have A1 〈proof 〉
moreover have A2 〈proof 〉
moreover have A3 〈proof 〉
ultimately have A4 by (rule r)

The primitive notion of calculational sequences does not include the particular
manner that actual results get used eventually. The first calculation above
employs the most basic pattern of an immediate proof “.” (single dot): the
final result ` x1 = x4 is applied directly to the claim “have x1 = x4”. The
second form happens to use the ultimate list of facts to prove a different result
by some rule r = ` A1 =⇒ A2 =⇒ A3 =⇒ A4.

Expanding the definitions of the derived calculational commands introduced
before, we may achieve the following raw Isar proofs (here we refer to concrete
attribute syntax for composition of facts, cf. §3.3.2).

have x1 = x2 〈proof 〉
note calculation = this

— first rule step: init calculation register

150 CHAPTER 6. Calculational reasoning

have . . . = x3 〈proof 〉
note calculation = trans [OF calculation this]

— general rule step: compose with transitivity rule

have . . . = x4 〈proof 〉
note calculation = trans [OF calculation this]

— final rule step: compose with transitivity rule . . .

from calculation

— . . . and pick up the result

have x1 = x4 .

note calculation = nothing

— purge calculation register before commencing next sequence

have A1 〈proof 〉
note calculation = calculation this

— general accumulation step: collect fact

have A2 〈proof 〉
note calculation = calculation this

— general accumulation step: collect fact

have A3 〈proof 〉
note calculation = calculation this

— ultimate accumulation step: collect fact . . .

from calculation

— . . . and pick up the result

have A4 by (rule r)

Certainly, the composition of the underlying primitive sequences of facts may
be simulated by “pure” natural deduction techniques as well, involving only
backwards reasoning. Thus we would get the following versions instead.

have x1 = x4

proof (rule trans)

show x1 = x3

proof (rule trans)

show x1 = x2 〈proof 〉
show x2 = x3 〈proof 〉

qed

show x3 = x4 〈proof 〉
qed

have A4

proof (rule r)

show A1 〈proof 〉
show A2 〈proof 〉
show A3 〈proof 〉

qed

6.2. Foundations of calculational reasoning 151

The first proof above exhibits all of the cumbersome formal detail required to
compose chains of basic facts naively. This involves explicit rule applications
of trans = ` a = b =⇒ b = c =⇒ a = c, nested sub-proofs, and repeated
intermediate statements. Traditional tactic scripts would usually proceed along
the same line, although that slightly awkward procedure would typically not be
visible from the code.
Our second backwards proof looks quite handsome at first sight, apart from the
separately nested sub-proof (which may occasionally become slightly cumber-
some as well). Plain back-chaining of a rule r is perfectly adequate in many
situations. On the other hand, there are useful patterns of the original calcula-
tional version, particularly in conjunction with automated proof tools to process
the accumulated result (see also §6.4.3).

6.2.3 Rules and proof search

An important design philosophy of Isar is to keep automated proof tools separate
from the key mechanisms of interpreting high-level proof texts. Only linear
search over a limited number of possibilities plus (higher-order) unification will
be accepted here. The place of complex automated proof methods is usually
in terminal positions, to justify local claims in the context of certain facts in
isolation (see also §7.5.2).
Reconsidering the commands for outlining calculational sequences (§6.2.2), we
see that there is a single non-deterministic parameter, namely the rule r ∈
T to be selected by the general also element. As Isar proof texts are inter-
preted strictly from left to right (§3.2.3), any subsequent result calculation = r
· (calculation @ this) has to be achieved from the present facts alone, with the
rule instance r determined by the system appropriately. As long as T only holds
canonical transitivities of =/</≤ the result is already uniquely determined, e.g.
providing facts ` x = y and ` y = z invariably yields ` x = z.
Isar uses the following refined strategy to support more general rule selections.
Assume a canonical order on the rule context T , and let a = calculation @ this
be the input given to the present calculational step. Now enumerate the mem-
bers r of T according to their priority, then enumerate the canonical sequences
of results r · a as obtained by parallel higher-order unification and back-chaining
of a with r (cf. §2.4). Finally filter this raw result sequence to disallow mere
projections of a; in other words remove those results b that do not make any
“progress”, in the sense that the conclusion of b is already present in one of the
members of the list a.
This strategy subsumes the simple case of unique results considered before, but
also does a good job at substitution: let us declare `P x =⇒ x = y =⇒ P y
and ` y = x =⇒ P x =⇒ P y to be tried after the plain transitivities considered
so far. The expression x = y only requires plain first-order unification, with a
unique most-general result. The critical part is to solve P x against the other
expression provided in the calculation, which is genuine higher-order problem.

152 CHAPTER 6. Calculational reasoning

The resulting unifiers will assign a certain λ-term to P that abstracts over
possible occurrences of sub-expression x. Here the standard strategy [Paulson,
1986] is to start with a solution with all occurrences, followed by all possible
partial occurrences in a fixed order, and finish with no occurrences. Note that
the latter case is the only possible solution if x does not occur at all, which is
actually a pathological case for our purpose, since it collapses the substitution
rules to `P =⇒ x = y =⇒ P and ` y = x =⇒ P =⇒ P, respectively.
Thus by filtering out mere projections like this, a basic calculational rule-step
is able to produce a sensible result, where all occurrences of a certain sub-
expression may be replaced by an equal one. Replacing only some occurrences
does not work, though, as there is no way in Isar to specify the intended result
of a calculational step directly. In practice, ill-behaved substitutions are usually
better replaced by plain transitivity, mentioning the full term context explicitly
in the text and making the justification step take care of normalizing the claim
appropriately (e.g. by Isabelle’s Simplifier [Nipkow et al., 2001], see also §7.3).
Substitution by greater (or equal) sub-expressions with additional monotonicity
constraints works as well, see also §6.3. The only caveat is that our notion
of “progress” in the filtering strategy really has to ignore local assumptions,
because higher-order resolution would insert additional premises even in the
degenerate cases of higher-order unification (§2.4).

6.3 Common patterns of calculational reasoning

The space of possible calculational expressions within Isar is somewhat open-
ended, due to the very nature that calculational primitives have been incorpo-
rated into the basic proof language. Certainly, creative users of Isabelle/Isar
may invent further ways of calculational reasoning at any time. Here we point
out possible dimensions of variety, and outline practically useful idiomatic pat-
terns. Our subsequent categories are guided by the way that primitive calcula-
tional sequences may be mapped into the Isar proof language, interacting with
different categories of existing language elements.

6.3.1 Variation of rules

Mixed transitivity

The most basic form of calculation is a plain transitive chain of equations, as we
have already encountered before. Mixed transitivities may be used as follows:
observe that the canonical ending (with a single-dot proof) forces the final goal
statement to exhibit the result explicitly in the text.

have x1 ≤ x2 〈proof 〉
also have . . . ≤ x3 〈proof 〉
also have . . . = x4 〈proof 〉

6.3. Common patterns of calculational reasoning 153

also have . . . < x5 〈proof 〉
also have . . . = x6 〈proof 〉
finally have x1 < x6 .

Likewise, we may use further combinations of relations like antisymmetry, as
long as there is a clear functional mapping from facts to the result and no
conflict with other rules.

have x ≤ y 〈proof 〉
also have y ≤ x 〈proof 〉
finally have x = y .

Substitution

The technical caveats of calculating with substitution rules have already been
covered in §6.2.3. The fine-tuned filtering of rule selections discussed before
admits consistent replacement of equals by equals without further ado, as illus-
trated below.

have A = B + f x + C + x 〈proof 〉
also have x = y 〈proof 〉
also have B + f . . . + C + . . . = D 〈proof 〉
finally have A = D .

In practice, calculations mostly consist of plain transitive steps with only very
few substitutions interspersed. These may be easily spotted in the text according
to the following discipline: the replacement statement (x = y above) mentions
proper sub-terms of the previous stage (without referencing “. . .”), while in
the consecutive stage the right-hand side of the replacement is documented by
appropriate occurrences of “. . .” in the result (reconsider B + f x + C + x
versus B + f . . . + C + . . . = D above).
Substitution with inequalities essentially works in a similar fashion, although
the rules need to be formulated slightly more specifically and include a separate
monotonicity condition. Consider the following example.

have A = B + x + C 〈proof 〉
also have x ≤ y 〈proof 〉
also have B + . . . + C = D 〈proof 〉
finally have A ≤ D

proof this

fix u v assume u ≤ v

thus B + u + C ≤ B + v + C by simp

qed

The rule used here is `a = f b =⇒ b ≤ c =⇒ (
∧

u v . u ≤ v =⇒ f u ≤ f v)
=⇒ a ≤ f c, which has three premises, but we have only filled in the first two
facts in the calculation; the remaining monotonicity constraint has been left as
additional hypothesis of the result, which eventually was solved by hand in the
proof annex given above.

154 CHAPTER 6. Calculational reasoning

Incidently, the monotonicity constraint already gets fully instantiated by giving
the first two facts only; thus the remainder is usually rather easily proven by
common automated tools. So in reality we would usually collapse the final
sub-proof to “by this simp”, or even just “by simp”. We see how high-level
calculational proof outlining nicely works hand-in-hand with dumb automation.

have A = B + x + C 〈proof 〉
also have x ≤ y 〈proof 〉
also have B + . . . + C = D 〈proof 〉
finally have A ≤ D by simp

In some cases, one may want to provide all three premises directly. This is
easily achieved by using moreover and also in combination, accumulating any
additional facts before the calculational rule is fired.
For example, cf. the Knaster-Tarski proof in §1.5 with the characteristic phrase
of “moreover note mono”. Slightly more realistic applications of calculations
with monotonicity constraints are given in [Bauer and Wenzel, 2001] [Bauer,
2001b], covering a set-theoretic model of Computational Tree Logic (CTL).

Modus ponens

We may also calculate directly with logical propositions, getting somewhat closer
to the proof style of [Dijkstra and Scholten, 1990]. The following pattern essen-
tially achieves “light-weight” natural deduction, by implicit use of the modus
ponens rule.

have A −→ B −→ C 〈proof 〉
also have A 〈proof 〉
also have B 〈proof 〉
finally have C .

In principle, transitivity of “−→” may be as a valid calculational rule as well,
although chaining of implications is more conveniently expressed directly by
Isar’s then primitive circumventing the overhead of explicit logical connectives
altogether. See also §6.4.2 for further issues of calculating with propositions.

Rules of Isabelle/HOL

Finally we present the collection of standard calculational rules as included in
the main Isabelle/HOL library (see also chapter 7).

` a = b =⇒ b = c =⇒ a = c
` a = b =⇒ b < c =⇒ a < c
` a < b =⇒ b = c =⇒ a < c
` a = b =⇒ b ≤ c =⇒ a ≤ c

6.3. Common patterns of calculational reasoning 155

` a ≤ b =⇒ b = c =⇒ a ≤ c
` a ≤ b =⇒ b ≤ a =⇒ a = b
` a ≤ b =⇒ b ≤ c =⇒ a ≤ c
` a < b =⇒ b ≤ c =⇒ a < c
` a ≤ b =⇒ b < c =⇒ a < c
` a < b =⇒ b < a =⇒ C
` a < b =⇒ b < c =⇒ a < c
` a ≤ b =⇒ a 6= b =⇒ a < b
` a 6= b =⇒ a ≤ b =⇒ a < b
` A ⊆ B =⇒ x ∈ A =⇒ x ∈ B
` x ∈ A =⇒ A ⊆ B =⇒ x ∈ B
` A −→ B =⇒ A =⇒ B
` A =⇒ A −→ B =⇒ B
` P a =⇒ a = b =⇒ P b
` a = b =⇒ P b =⇒ P a
` a = f b =⇒ b < c =⇒ (

∧
x y . x < y =⇒ f x < f y) =⇒ a < f c

` a < b =⇒ f b = c =⇒ (
∧

x y . x < y =⇒ f x < f y) =⇒ f a < c
` a = f b =⇒ b ≤ c =⇒ (

∧
x y . x ≤ y =⇒ f x ≤ f y) =⇒ a ≤ f c

` a ≤ b =⇒ f b = c =⇒ (
∧

x y . x ≤ y =⇒ f x ≤ f y) =⇒ f a ≤ c
` a ≤ f b =⇒ b ≤ c =⇒ (

∧
x y . x ≤ y =⇒ f x ≤ f y) =⇒ a ≤ f c

` a ≤ b =⇒ f b ≤ c =⇒ (
∧

x y . x ≤ y =⇒ f x ≤ f y) =⇒ f a ≤ c
` a < f b =⇒ b ≤ c =⇒ (

∧
x y . x ≤ y =⇒ f x ≤ f y) =⇒ a < f c

` a < b =⇒ f b ≤ c =⇒ (
∧

x y . x < y =⇒ f x < f y) =⇒ f a < c
` a ≤ f b =⇒ b < c =⇒ (

∧
x y . x < y =⇒ f x < f y) =⇒ a < f c

` a ≤ b =⇒ f b < c =⇒ (
∧

x y . x ≤ y =⇒ f x ≤ f y) =⇒ f a < c
` a < f b =⇒ b < c =⇒ (

∧
x y . x < y =⇒ f x < f y) =⇒ a < f c

` a < b =⇒ f b < c =⇒ (
∧

x y . x < y =⇒ f x < f y) =⇒ f a < c

Note that meaningful calculations may already be performed with basic tran-
sitivity of “=” alone. So users who start new object-logics may be content to
begin with significantly fewer rules (see also the primitive formulation of basic
higher-order logic in chapter 8). Even the degenerate version without using any
rules has its distinctive applications (see also §6.4.3).
In any case, end-users may easily declare further transitivity rules for specific
relations occurring in the particular applications at hand. Concrete syntax to
manipulate the implicit rule context T is provided by the trans attribute (see
also [Wenzel, 2001a]).

6.3.2 Variation of conclusions

Recall that the business of managing the calculational process actually finishes
with the concluding finally or ultimately command, which exhibits the result
with forward-chaining indicated (cf. §6.2.2). The next command needs to be a
plain goal of the Isar language, such as have or show (cf. §3.2.1). The most
basic proof of such a claim is just “.”, meaning that the goal statement actually

156 CHAPTER 6. Calculational reasoning

reiterates the calculational result directly (or a substitution instance).
Occasionally, one might even wish to modify the final result via a single canonical
rule that is easy to oversee, e.g. symmetry of “=” as illustrated below.

have x1 = x2 〈proof 〉
also have . . . = x3 〈proof 〉
also have . . . = x4 〈proof 〉
finally have x4 = x1 ..

Another useful idiom is to feed the result, which may be just a number accumu-
lated facts, into a single rule with several premises. This technique is illustrated
by the following forward-proof of A ∧ B −→ B ∧ A.

lemma A ∧ B −→ B ∧ A

proof

assume ab: A ∧ B

hence B ..

moreover

from ab have A ..

ultimately

show B ∧ A ..

qed

Here the result emerges in the ultimate “..” proof by ∧ introduction. This
pattern may be easily generalized to any number of premises and arbitrary
proof methods, eventually achieving a version of “big-step” inferences (see also
§6.4.3).

Certainly, the obtain element (§5.3) may be used as a concluding goal statement
as well, being based on plain have internally. Subsequently we give a slightly
unusual calculation, consisting of mere accumulation steps with the ultimate
result being used obtain the very same facts simultaneously.

have A 〈proof 〉
moreover have B 〈proof 〉
moreover have C 〈proof 〉
ultimately obtain A and B and C ..

Note that the ultimate proof needs to perform a single step (via “..”) due to
the standard introduction pattern of obtain (cf. §5.3.3).

6.3.3 Variation of facts

In all calculational schemes encountered so far, the facts placed into the chain
have been produced by intermediate statements “have ϕ 〈proof 〉”. This hap-
pens to be the most common pattern in practice, but does not constitute an
inherent restriction. Any other Isar language element that yields a result may
be used in calculations as well. This includes note (§3.2.1) to recall existing

6.3. Common patterns of calculational reasoning 157

theorems, or goal elements such as show (§3.2.1), or even context commands
such as assume (§3.3.1), or obtain (§5.3).
For example, the Knaster-Tarski proof in §1.5 illustrates very basic use of
“moreover note” to include an auxiliary fact into the calculational sequence;
“also note” frequently occurs in many applications as well. Combinations with
obtain are very useful in typical computer-science applications involving ab-
stract syntactic models (e.g. see chapter 10), but also in classical mathematics
involving representation proofs (as in chapter 9).

The use of assume within a calculation represents the most basic case of com-
bining calculational reasoning and pure natural deduction. Consider the follow-
ing induction proof of the summation formula for odd numbers.
In our first version below there is no tight integration of the two styles of reason-
ing, yet. We use naive backwards reasoning at the outer level, with a separate
local calculation to establish the induction step.

lemma (
∑

k < n. 2 ∗ k + 1) = n2 (is ?S n = -)

proof (induct n)

show ?S 0 = 02 by simp

next

fix n assume hyp: ?S n = n2

show ?S (Suc n) = (Suc n)2

proof −
have ?S (Suc n) = 2 ∗ n + 1 + ?S n by simp

also note hyp

also have 2 ∗ n + 1 + n2 = (Suc n)2 by simp

finally show ?thesis .

qed

qed

A slightly less formalistic proof may be achieved by a number of straight-forward
rearrangements: defer the main inductive goal to the very end (casual forward
reasoning instead of strictly hierarchical organization); introduce the induction
hypothesis at the place where it is actually used (possible due to flat structure);
eliminate superfluous naming of assumption (due to natural flow of facts); use
n + 1 instead of Suc n in local statements (due to “by simp” in the final step).

lemma (
∑

k < n. 2 ∗ k + 1) = n2 (is ?S n = -)

proof (induct n)

show ?S 0 = 02 by simp

next

fix n have ?S (n + 1) = 2 ∗ n + 1 + ?S n by simp

also assume ?S n = n2

also have 2 ∗ n + 1 + . . . = (n + 1)2 by simp

finally show ?S (Suc n) = (Suc n)2 by simp

qed

The deeper reason why natural deduction elements (namely assumptions) may

158 CHAPTER 6. Calculational reasoning

get introduced in the middle of calculational sequences is the way that Isar
proof contexts are managed, completely independently of any goal statements
(cf. §3.3.1 and §5.2.1). In particular, the proof context is inherently “cascaded”,
in the sense that the scope of conceptual λ-abstractions introduced via the
assm primitive (and its derived forms like assume, cf. §3.3.1) spans over the
remaining proof body, until the next closing block (cf. §5.2.1).

6.3.4 Variation of general structure

Calculational sequences are basically linear, but arbitrary many intermediate
steps may be taken until the next fact is produced. This may include further
nested calculations, as long as these are arranged on separate levels of block
structure. Nested calculations routinely emerge by virtue of the implicit block
structure of sub-proofs. Raw proof blocks may be used as well (cf. §5.2.4), al-
though this occurs less frequently in practice. The subsequent pattern illustrates
both instances.

have x1 = x2 〈proof 〉
also have . . . = x3

proof −
have . . . = y1 〈proof 〉
also have . . . = y2 〈proof 〉
also have . . . = x3 〈proof 〉
finally show ?thesis .

qed

also {
have . . . = z1 〈proof 〉
also have . . . = z2 〈proof 〉
also have . . . = x4 〈proof 〉
finally have x3 = x4 .

}
finally have x1 = x4 .

Appropriate use of nested calculations is left to the discernment of the user (cf.
the general liberality principle of the Isar, §1.3),

6.4 Discussion

6.4.1 Iterated equalities in Mizar

Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999] has
focused on formal proof in common mathematics style from its very beginnings.
Consequently, it also offers a mechanism for iterated equality reasoning accord-
ing to basic calculations seen in typical mathematical reasoning.

6.4. Discussion 159

Iterated equalities are hard-wired into the Mizar implementation. Composition
of individual steps may involve transitivity or substitution of the equality rela-
tion (over individuals of first-order logic). The following trivial example is taken
from article #185 of [Mizar library].

theorem Th1:

for X,Y being set holds union {X,Y,{}} = union {X,Y}

proof

let X,Y be set;

thus union {X,Y,{}} = union ({X,Y} U {{}}) by ENUMSET1:43

.= union {X,Y} U union {{}} by ZFMISC_1:96

.= union {X,Y} U {} by ZFMISC_1:31

.= union {X,Y};

end;

Recall that thus in Mizar indicates that the subsequent statement is meant to
solve a pending goal. Furthermore, the “continued equality” sign “.=” indicates
that the actual result shall emerge from a number of individual equations, where
transitivity steps are handled behind the scenes.
The very same example works out in Isabelle/Isar as follows, at the mercy of
automated reasoning tools available in Isabelle (see also §7.3).

theorem
⋃
{X , Y , {}} =

⋃
{X , Y }

by auto

Similar proof tools of HOL [Gordon and Melham, 1993] or PVS [Owre et al.,
1996] would certainly solve such trivial problems without further ado as well.
Indeed, many calculations in the Mizar library are of the same kind as above.
This incident indicates that Mizar’s builtin proof tools do not handle equality
too well; there is no direct support for rewriting. Consequently, basic simplifi-
cations need to be performed by hand via numerous steps of iterated equalities.
Nevertheless, iterated equalities in Mizar turn out as an indispensable means for
proper arrangement of many practical relevant proof patterns. Obviously, arbi-
trary automated reasoning is not a replacement for proper concepts of high-level
proof structure.

The next version takes the business of calculational reasoning in Isar seriously.
We mimic the original Mizar proof as closely as possible.

theorem
⋃
{X , Y , {}} =

⋃
{X , Y }

proof −
have

⋃
{X , Y , {}} =

⋃
({X , Y } ∪ {{}}) by auto

also have . . . =
⋃
{X , Y } ∪

⋃
{{}} by auto

also have . . . =
⋃
{X , Y } ∪ {} by auto

also have . . . =
⋃
{X , Y } by auto

finally show ?thesis .

qed

It is important to note that this enlarged text is still meaningful, despite being
rather redundant in terms of the automated proof method available in Isabelle.

160 CHAPTER 6. Calculational reasoning

Each terminal sub-proof of “by auto” is strictly limited to a local problem,
there is no way to disturb the global arrangement of reasoning accidentally.
The calculational sequence is evaluated independently of the intermediate steps
taken in the proof process.
This robustness of proof texts against arbitrary operations performed inside of
proof methods is essentially a consequence of modularity of Isar proof processing
(cf. chapter 3).

Comparing the overall structure of Isar calculations with iterated equalities in
Mizar, we first observe that Mizar does not require separate language elements
to manage the course of reasoning (unlike also/finally in Isar). Mizar is content
with “.= y” where Isar would typically require “also have . . . = y” to be spelled
out explicitly. On the other hand, the latter just happens to be a particular
idiomatic expression within a more general playground (cf. §6.3).
Another notable difference is how the final result is exhibited: in Mizar it is
made directly available to the proof context (here as the result of thus, which
solves the main goal). In Isar the calculational result is always indicated for
forward chaining, which forces the next command to be a goal statement that is
meant to use that fact in an appropriate manner. The most common Isar idiom
is to reiterate the result in the text and prove it immediately (via “.”), as in
“finally show ϕ .” for a result of ` ϕ. This scheme of Isar avoids “magical”
appearance of implicit facts from calculations spanning several lines (or even
pages as routinely encountered in the Mizar library).

Looking more closely how the previous calculational proof actually proceeds, we
see that there are a number of substitution steps involved, although the top-
level chain has been presented as a plain transitive one by repeating previous
term contexts. Both Isar and Mizar are able to perform substitutions directly
as well. The subsequent Isar proof makes this explicit, where we use the generic
“. . .” term abbreviation to indicate the positions of replacement according to
the substitution discipline outlined in §6.3.1.

theorem
⋃
{X , Y , {}} =

⋃
{X , Y }

proof −
have {X , Y , {}} = {X , Y } ∪ {{}} by auto

also have
⋃
. . . =

⋃
{X , Y } ∪

⋃
{{}} by auto

also have
⋃
{{}} = {} by auto

also have
⋃
{X , Y } ∪ . . . =

⋃
{X , Y } by auto

finally show ?thesis .

qed

It is important to note that the above use of “. . .” does not control substitu-
tion steps, but only documents its effect. In contrast, Mizar is bound to the
fixed “.=” notation even in substitution steps; thus non-trivial chains are some-
what harder to read than in Isar. Nevertheless, substitution chains should not
be made overly smart. Many practical applications are more adequately repre-
sented by plain transitivity, leaving the details of substitution to the justification

6.4. Discussion 161

steps (e.g. to the simp or auto proof methods of Isabelle, see also §7.3).

In conclusion, Mizar’s concept of iterated equalities may be understood as a
hardwired version of a fixed format of Isar calculations, picking the following
parameters of our framework (cf. §6.3).

• Individual steps are always linked via also using either plain transitivity
or substitution (of “=” over individuals of first-order logic only).

• Conclusions may be either “finally have” or “finally show”, although
the final result would emerge immediately in the Mizar proof text, without
the additional proof step encountered in Isar.

• Intermediate facts always emerge from “have ϕ 〈proof 〉” elements.

• The “. . .” term abbreviation degenerates into a formal device to indicate
continued equality (cf. Mizar’s special “.=” notation).

Apparently, Isar has been able to offer a more flexible calculational environment,
with only very few conservative additions to the existing framework. There is
no need to hardwire calculational concepts into the existing process of high-level
proof processing for natural deduction (chapter 3).

6.4.2 Dijkstra’s universal calculational proof format

The calculational proof format proposed by Dijkstra (e.g. [Dijkstra and Scholten,
1990]) has a strong focus on direct manipulation of boolean expressions rather
than mere relations over individual elements. The most basic pattern intro-
duced in [Dijkstra and Scholten, 1990, §4] is that of iterated logical equivalence,
eventually yielding boolean values of true or false.

[A]
= {hint why [A] ≡ [B]}

[B]
= {hint why [B] ≡ [C]}

[C]
= {hint why [C] ≡ true}

true

Note that the square bracket notation “[A]” refers to Dijkstra’s builtin treatment
of implicit state dependency of logical expressions, cf. the discussion of the
specific notion of “structures” in [Dijkstra and Scholten, 1990, §1]. [Harrison,
1998] provides a somewhat simpler representation of this basic idea within the
language of HOL, using plain abstraction and universal quantification.
Further abbreviations are used for the special case of propositions stating equal-
ity of individuals. This essentially results in transitive chains over the equality
relation, although Dijkstra requires Leibniz’s rule to justify that pattern on top
of the previous propositional one [Dijkstra and Scholten, 1990, page 23].

162 CHAPTER 6. Calculational reasoning

A
= {hint why [A = B]}

B
= {hint why [B = C]}

C
= {hint why [C = D]}

D

In the Isar framework such proof patterns could be explained easily via calcula-
tional sequences using plain transitivity rules of logical equivalence and equality
(cf. §6.2.1). In the HOL logic both rules would even coincide, since there is
nothing special about the type bool [Church, 1940] [Gordon and Melham, 1993].
Thus we could calculate directly with propositions, as illustrated below. Note
that we refer to additional standard elimination rules ` A = True =⇒ A and
` A = False =⇒ ¬ A to streamline the final results.

have A = B 〈proof 〉
also have . . . = C 〈proof 〉
also have . . . = True 〈proof 〉
finally have A ..

have A = B 〈proof 〉
also have . . . = C 〈proof 〉
also have . . . = False 〈proof 〉
finally have ¬ A ..

Dijkstra’s proof format is intended as a replacement of natural deduction, logical
equivalence is generally preferred over directed reasoning from assumptions to
conclusions. Furthermore, the “hints” justifying individual calculational steps
are drawn from the “calculus of boolean structures” [Dijkstra and Scholten,
1990, §5], featuring a number of specific rules such as the lattice-theoretical fact
[A ∧ B ≡ A ≡ B ≡ A ∨ B] (called the “Golden Rule”).
The example of A ∧ B ≡ B ∧ A shall illustrate the resulting kind of reasoning
with boolean structures, cf. [Dijkstra and Scholten, 1990, p. 38].

A ∧ B
= {Golden Rule}

A ≡ B ≡ A ∨ B
= {associativity and symmetry of ≡}

B ≡ A ≡ A ∨ B
= {symmetry of ∨}

B ≡ A ≡ B ∨ A
= {Golden Rule}

B ∧ A

The treatment of full logical equivalence is usually quite handsome in Dijkstra’s
algebraic setting of boolean structures. Nevertheless, plain implications are

6.4. Discussion 163

occasionally required in practice whenever only one direction happens to hold,
or the other one is hard to prove and not really required. Dijkstra’s format
allows to mix equivalence with implication (in either direction). Some care has
to be taken to direct the calculation properly, depending on the final result
of either true or false, namely A ⇐= true versus A =⇒ false. Naturally, the
converse statements are useless, although they readily occur in proof attempts
of beginners.

In Isar we may easily emulate the mixed form of calculating with transitivity
rules for (backwards and forwards) implication on propositions. Again we prefer
to simplify final implications involving basic boolean values.

have A ←− B 〈proof 〉
also have . . . = C 〈proof 〉
also have . . . ←− True 〈proof 〉
finally have A ..

have A −→ B 〈proof 〉
also have . . . = C 〈proof 〉
also have . . . −→ False 〈proof 〉
finally have ¬ A ..

Subsequently, we expose the complete collection of transitivity rules required to
emulate common proof patterns of Dijkstra’s calculational format in Isar.

` A −→ B =⇒ B −→ C =⇒ A −→ C
` A = B =⇒ B −→ C =⇒ A −→ C
` A −→ B =⇒ B = C =⇒ A −→ C
` A ←− B =⇒ B ←− C =⇒ A ←− C
` A = B =⇒ B ←− C =⇒ A ←− C
` A ←− B =⇒ B = C =⇒ A ←− C

The following rules may be declared as standard eliminations, in order to be
able to conclude plain propositions as final result (merely using a single “..”
proof step, instead of the common “.”). Certainly, such formal details would be
omitted in an informal setting like the original one of Dijkstra.

` A ←− True =⇒ A
` A = True =⇒ A
` A −→ False =⇒ ¬ A
` A = False =⇒ ¬ A

We see that the high-level natural deduction framework of Isar is able to assim-
ilate Dijkstra’s algebraic view on logic quite easily. In fact, the two styles may
peacefully coexist within the same environment, enabling the user to choose the
preferred techniques according to the particular situation at hand.
On the other hand, the standard Isabelle library does not declare the specific
collection of propositional calculational rules as presented above. While logical
equivalence is already covered by the general “=” relation (in HOL), we have

164 CHAPTER 6. Calculational reasoning

intentionally omitted any implication rules (apart from plain modus ponens, cf.
§6.3.1). In fact, serious applications would really demand backward implication
“←−”, which is absent in the Isabelle/HOL library in the first place.

The deeper reason for excluding transitive chains of implication by default is
that Isar’s very natural deduction core is more appropriate to treat this issue
directly, without requiring any particular logical connectives.
As a general rule of thumb, “native” Isar language elements should be preferred
over any “encoding” of concepts within the logic, since such indirection would
have to be taken care of explicitly within proofs. As a notable example for the
same principle reconsider the abstract handling of nested “∃ ” and “∧” forms
via the derived Isar element obtain (cf. §5.3). The case of iterated (forward)
implication is an even more fundamental one, being already inherently present
in the basic concept of forward-chaining in Isar (chapter 3), as illustrated below.

{
assume A1

hence A2 〈proof 〉
hence A3 〈proof 〉
hence A4 〈proof 〉
}
hence A1 −→ A4 ..

In typical applications we would not even need to exhibit the final statement
A1 −→ A4, the proof may usually just continue with the dependent result in a
casual manner.
The following variant calculates with transitivity of implication instead of using
native forward-chaining seen before.

have A1 −→ A2 〈proof 〉
also have . . . −→ A3 〈proof 〉
also have . . . −→ A4 〈proof 〉
finally have A1 −→ A4 .

At first sight, this pattern appears to be quite handsome after all. On the
other hand, the individual justification steps need to tackle a slightly different
goal statement involving explicit implications. Unless some automated proof
support takes care of this behind the scenes, we would have to decompose the
statements directly within the text. Since single rule applications tend to be
used frequently in Isar, this minor difference may already be considered as one
unnecessary complication too many.
The formal noise hidden here is made explicit as follows. After initial decom-
position, the remaining justifications are technically exactly the same as in the
version with plain forward-chaining given before.

have A1 −→ A2

proof

assume A1

6.4. Discussion 165

thus A2 〈proof 〉
qed

also have . . . −→ A3

proof

assume . . .

thus A3 〈proof 〉
qed

also have . . . −→ A4

proof

assume . . .

thus A4 〈proof 〉
qed

finally have A1 −→ A4 .

The difference of derivations from facts versus explicit intra-logical implication
encountered here would not really matter in Dijkstra’s original informal setting.
In Isar any additional formal detail is apt to intrude proof texts immediately, so
we need to be more careful to avoid unnecessary clutter of formal proof texts.

6.4.3 Degenerate calculations and big-step reasoning

Corresponding to the notions of rule-steps versus accumulation-steps (§6.2.2),
Isar provides two kinds of calculational commands, namely also/finally versus
moreover/ultimately (§6.2.1). Calculations composed by also/finally may
be considered as “proper” ones, corresponding closely to the original idea of
iterated applications of (implicit) transitivity rules. Occasional moreover steps
may get included here as well, in order to accommodate rules with more than
two premises (cf. §6.3.1).
Actual “degenerate” calculations would only consist of moreover steps and
conclude via ultimately. Here the effect is to collect a number of facts over a
certain range of proof text, and exhibit it as a list of theorems to the ultimate
claim. The latter may involve any goal statement, established by an arbitrary
proof method (cf. §6.3.2).

Degenerate calculations turn out as a surprisingly useful concept in their own
right, mainly due to the following key properties of Isar.

1. Facts contributing to a calculation may consist of any proof text that
produces results eventually. In particular, this may include explicit blocks
“{ . . . }” to manage independent local contexts.

2. The ultimate conclusion may involve any proof method, including ad-
vanced automated tools.

3. Calculations may be nested according to the block structure of the text.

166 CHAPTER 6. Calculational reasoning

As already seen earlier (§6.3.2), moreover/ultimately may essentially be used
to invert the course of basic natural deduction. This results in a strongly forward
style, without demanding excessive use of explicit references to previous facts
in the text. For example, consider the following version of ∧ introduction.

have A 〈proof 〉
moreover have B 〈proof 〉
ultimately have A ∧ B ..

This scheme may be easily generalized to any number of conjuncts, by using
Isabelle’s classical tableau prover blast (see §7.3) in the ultimate step (this rather
trivial case happens to work with plain simp as well).

have A1 〈proof 〉
moreover have A2 〈proof 〉
moreover have A3 〈proof 〉
ultimately have A1 ∧ A2 ∧ A3 by blast

The dual pattern of ∨ elimination essentially works in the same way (here
the “logical” reasoning capabilities of blast will be really required). The facts
contributing to the calculation emerge from proof blocks with separate local
contexts, corresponding to the individual cases of the original disjunction. The
structure of the subsequent proof pattern follows the rule ` A1 ∨ A2 ∨ A3 =⇒
(A1 =⇒ C) =⇒ (A2 =⇒ C) =⇒ (A3 =⇒ C) =⇒ C.

assume A1 ∨ A2 ∨ A3

moreover {
assume A1

hence C 〈proof 〉
}
moreover {

assume A2

hence C 〈proof 〉
}
moreover {

assume A3

hence C 〈proof 〉
}
ultimately have C by blast

These examples already illustrate the most basic use of “big-step” reasoning via
degenerate calculations used together with automated proof tools. Here plain
natural deduction is essentially scaled up to a larger fragment of first-order logic,
somewhat depending on the capabilities of the underlying proof procedure.
Such techniques of synthesizing results in a forward manner may occasionally
get used with some advantage in order to streamline Isar proof texts. Deeply
nested backward patterns may especially benefit, as illustrated by the subse-
quent versions of iterated ∀ introduction.

6.4. Discussion 167

have ∀ x y z . P x y z

proof

fix x

show ∀ y z . P x y z

proof

fix y

show ∀ z . P x y z

proof

fix z

show P x y z 〈proof 〉
qed

qed

qed

{
fix x y z

have P x y z 〈proof 〉
}
then have ∀ x y z . P x y z by blast

Here the “calculation” happens to consist of a single proof block only, with the
result being fed into the blast step via plain forward chaining of “then have”,
instead of the previous “ultimately have”. In fact, “ultimately” happens to
be equivalent to “moreover note calculation then” (cf. §3.3.3 and §6.2.2).
Thus we may understand the present technique of degenerate calculations as a
natural generalization of Isar’s then primitive (cf. §3.2.1): plain then enables
the proof writer to continue with the most recent result immediately, avoiding
explicit naming of previous facts; moreover/ultimately achieve a similar effect
for an arbitrary number of results accumulated from several chunks of proof text.

More complex nesting of (mixed) logical connectives may be used in big-step
reasoning as well. The only limits are those imposed by the capabilities of the
ultimate proof method. Here the actual Isar proof processor merely takes care
of the general flow of facts, including handling of nested proof contexts. Proper
integration of individual results is left to the accidental virtues of the automated
proof procedures that happen to be available.
The following example essentially covers simultaneous elimination of ∃ , ∨, ∧.
This is still a very simple task for the blast method of Isabelle (see §7.3).

assume A ∨ (∃ x . P x) ∨ (∃ y z . Q y z ∧ R z)

moreover {
assume A

hence C 〈proof 〉
}
moreover {

fix x

assume P x

168 CHAPTER 6. Calculational reasoning

hence C 〈proof 〉
}
moreover {

fix y z

assume Q y z and R z

hence C 〈proof 〉
}
ultimately have C by blast

In reality, one might even attempt to omit the explicit “covering” statement
A ∨ (∃ x . P x) ∨ (∃ y z . Q y z ∧ R z), and let the automated prover take
care of this formal detail itself. Further contributing facts may be included as a
separate moreover step, which is better put at the end of the calculation. Thus
we happen to achieve a succinct presentation of “generalized case-splitting”
patterns already discussed in §5.5.3.

{
assume A

hence C 〈proof 〉
}
moreover {

fix x

assume P x

hence C 〈proof 〉
}
moreover {

fix y z

assume Q y z and R z

hence C 〈proof 〉
}
moreover note auxiliary-stuff

ultimately have C by blast

Recall that case-splitting with a single branch coincides with the simpler form
of “generalized elimination” already covered by the obtain command (cf. §5.3).
Such elimination patterns may certainly be rephrased in big-step reasoning style
as well, although this turns out as slightly more awkward in practice.

assume ∃ x y z . P x ∧ Q y z ∧ R z

then obtain x y z where P x and Q y z and R z by blast

assume ∃ x y z . P x ∧ Q y z ∧ R z

moreover {
fix x y z

assume P x and Q y z and R z

hence C 〈proof 〉
}
ultimately have C by blast

6.4. Discussion 169

Here the issue of avoiding explicit elimination statements (given as initial as-
sumptions above) is the same as before, cf. the related discussion in §5.3.3. Note
that the second version does require the explicit conclusion C, unlike obtain
which has been designed to be independent of ultimate goal statements in the
first place (§5.3).

Problems of big-step reasoning

Concerning the general issue of high-level proof processing, the previous exam-
ples suggest that we could in principle ignore most of the existing Isar infras-
tructure that is intended for fine-grained natural deduction proof composition
(chapter 3), and be content with only a few basic elements to declare the overall
proof structure, together with a sufficiently powerful proof procedure to fill in
the remaining gaps. For example, one might be tempted to restrict the Isar lan-
guage to fix, assume, have, moreover, ultimately, “{”, “}”, and “by blast”.
Such an extreme view of big-step reasoning has been occasionally proposed as
a natural approach to structured proof processing, especially by those with a
special interest in automated reasoning.

[Dahn and Wolf, 1994] introduce a separate calculus for structured proofs in
classical first-order logic, with separate means to achieve local results by virtue
of automated reasoning. These concepts have been integrated into the ILF
system [Dahn et al., 1997], which has been able to process an adapted version
of the full collection of Mizar articles [Mizar library] by heavy-duty first-order
automation. Thus existing formalized proofs have been replayed successfully.
On the other hand, it is unclear how that system would perform in development
of new applications. The original Mizar system [Rudnicki, 1992] [Trybulec,
1993] [Muzalewski, 1993] [Wiedijk, 1999] is particularly good at providing fine-
grained error messages of failed inference steps, which are indispensable as user
feedback for failed proof attempts. Existing automated reasoning tools are
usually designed with different goals in mind, posing a serious problem to error
recovery. For example, a “resolution prover” would transform the initial problem
into an unintelligible internal normal form first, so any immediate feedback
would be given at a level that is hard to follow by most users.

Harrison’s “Mizar mode for HOL” [Harrison, 1996b] and Zammit’s SPL [Za-
mmit, 1999a] [Zammit, 1999b] show some tendency towards heavy automated
proof tools as a key to high-level proof texts as well. Substantial parts of that
work covers the issue of providing suitable automated reasoning for the under-
lying implementations of HOL. Nevertheless, both of these systems still provide
a useful collection of basic proof steps based on simple inferences.
DECLARE [Syme, 1997a] [Syme, 1998] [Syme, 1999] diminishes the domination
of automated reasoning a bit further. DECLARE still has a heavy combination
of automated tools hard-wired (analogous to auto in Isabelle/HOL, see §7.3),
but this is only one of its three basic principles of declarative theorem proving.

170 CHAPTER 6. Calculational reasoning

Speaking in Isar terms, the other two essentially correspond to advanced elim-
ination and case-splitting principles (§5.3 and §5.5.3), and specific support for
induction patterns (§5.4).

We argue that purely “automatic” checking of high-level proof texts is quite
unsuitable for realistic applications. From the Isar perspective, automated rea-
soning needs to be restricted to its proper place of solving occasional proof
obligations occurring terminally. Backed by the experience of Isar applications
so far, we see this restrictive policy towards proof automation as a key factor to
achieve a viable system supporting a broad range of formal developments.

Automated reasoning essentially suffers from two main deficiencies.

1. Failed proof search usually does not provide feedback for users.

2. Successful proof search is generally non-compositional.

The issue of failing gracefully is particularly important for development (and
maintenance) of proofs. During a typical interactive session, invocations of
automated tools fail over and over again, until the user is able to isolate all the
bugs in statements and omissions of auxiliary facts eventually. Thus successful
automated proof search actually turns out as the exception, rather than the rule.
So instead of an automated proving, users would first and foremost need proper
support for automated “disproving”. In other words some tools to produce
counter-examples systematically, cf. related issues covered by the KIV system
[Reif, 1992]. Similar experience with the proof development cycle has been
reported in a non-trivial case-study conducted with DECLARE [Syme, 1997a]
[Syme, 1998] [Syme, 1999].

Compositionality is probably the key to scalable applications whatsoever. It
generally means that smaller entities may be composed to larger ones in a mod-
ular fashion, without breaking down previous work. In the context of theorem
proving two specific aspects need to be covered here in particular: monotonicity
wrt. proof contexts and invariance wrt. instantiation of statements.
In terms of Isar, monotonicity means that additional elements of fix, assume,
have, note etc. may be safely added to an existing proof body. It is easy
to see that the basic Isar proof processing mechanism (§3.2.3) indeed fulfills
this property, essentially due to monotonicity of the underlying higher-order
backchaining rule (§2.4); the same holds for robustness against instantiation.

The situation changes immediately when automated proof methods enter the
scene. In practical Isar proof development partial proofs routinely break down
due to ill-behaved situations involving advanced methods like blast, auto, force
(see §7.3). More powerful procedures typically cause more problems in practice
than simpler ones (like simp). Consequently, a general “strength reduction” of
the deductive tools that are sufficient to conduct meaningful Isar applications
turns out as an important contribution to practical usability of the system.

6.4. Discussion 171

As will be illustrated by concrete applications later on (chapter 8, chapter 9,
chapter 10), Isar proofs largely refer to relatively simple deductive means, such
as single-step inferences (using the fundamental methods rule or this, cf. §3.3.2)
or plain higher-order rewriting (using simp, see §7.3).
Thus our common Isar proof style is able to achieve relatively robust proof
outlines that may be analyzed in reasonable fine-grained steps, which may be
checked interactively by the user. Typically there are only very few “hot spots”
of terminal proofs by heavy automated methods (like “by blast”) that need to be
taken care of separately. The latter tend to demand substantial amount of time
in practice, both from the user and the machine (cf. the related discussion in
§10.7.2). So it is important to minimize these incidents of automated reasoning
in sizable Isar developments.

In contrast, the present style of big-step reasoning emphasizes the very role of
automated means: results gathered over large portions of proof text (probably
with complex structured local contexts) need to be handled ultimately in a
single big step. Note that the resulting problems are similar to those of “big-
bang integration” of software components: a number of individual pieces finished
beforehand are suddenly joined to a more complex system. Lacking any previous
considerations of how individual elements may need to correlate, any failures of
integration result in a single big problem to be treated in an ad-hoc fashion.
For example, reconsider one of the previous generalized case-splitting patterns,
with just a few minor modifications in the individual proof blocks (maybe due
to typographical errors, or some misunderstanding of the writer).

assume A ∨ (∃ x . P x) ∨ (∃ y z . Q y z ∧ R z)

moreover {
assume A ′ and B

— modified assumption A ′, additional one B

hence C 〈proof 〉
}
moreover {

fix x

assume P x

hence C ′ 〈proof 〉
— modified conclusion C ′

}
moreover {

fix y z w

assume Q y z and R ′ z w

— modified assumption R ′ z w, additional parameter w

hence C 〈proof 〉
}
ultimately have C

...

172 CHAPTER 6. Calculational reasoning

Here the individual sub-problems may still work accidentally; their respective
proofs may not affect the overall situation anyway, because of compositional
proof processing in Isar. After having successfully processed a large body of
text, the user is ultimately faced with a failure to compose these pieces success-
fully by virtue of automated reasoning. Unfortunately, the latter would usually
provide no clue what exactly went wrong, e.g. in the particular mismatch the
individual local proof contexts against the initial covering statement (which
may have been left implicit in the first place). Note that some modifications
of the previous text may actually be valid transformations of the overall proof
problem, independently if this has been intended by the writer.

Ontic [McAllester, 1988] essentially follows the general idea of big-step reasoning
very faithfully. Its main paradigm is that of “socratic proofs”, i.e. nested lem-
mas that are linked implicitly by a specific inference mechanism. Interestingly,
McAllester rejects arbitrary “heuristic” procedures here as well, but focuses on
“algorithmic” principles [McAllester, 1990]. Note that degenerate calculations
in Isar could easily emulate Ontic proof schemes, essentially by replacing the
blast method encountered above by an implementation of McAllester’s inference
mechanism.
A similar tendency to reject arbitrary proof search may be observed in Mizar
[Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999], where the
builtin notion of “obvious inferences” [Rudnicki, 1987] has been deliberately
limited to a fragment of classical first-order logic that may be decided quickly.
This decision may be even one of the deeper reasons why Mizar users have been
able to compile a large body of applications [Mizar library] over the years.

We see that the useful concept of degenerate calculations in Isar needs to be
applied with some care, lest the resulting proof development result in serious
inconveniences for both the writer and anybody doing maintenance work later
on. The general liberality principle of Isar (cf. §1.3) does not stop users from
abuse, though. It is left to the discernment of the proof writer to express
advanced high-level proof schemes adequately.

Part III

Applications

173

Chapter 7

The Isabelle/HOL application
environment

We outline the Isabelle/HOL application environment, as required for several
“realistic” Isabelle/Isar examples covered later on. Apart from basic logical pre-
liminaries of HOL, which are not of primary interest here, we review practically
relevant issues of derived definitional mechanisms, advanced proof methods, and
the main Isabelle/HOL library.

The Isar framework is essentially as generic as Isabelle itself, so different object-
logics could be used for applications as well. On the other hand, practical
work demands a sufficiently rich environment of tools and theories to be readily
available. We commit ourselves to the existing Isabelle/HOL system in order
to get started with only minimal Isar specific additions required.

7.1 The HOL logic

HOL [Gordon and Melham, 1993] [Gordon, 2000] has emerged from an old-
fashioned system by Church, originally called the “Simple Theory of Types”
[Church, 1940]. Viewed from the perspective of pure logic, several aspects of
HOL might appear slightly peculiar at first sight, like the type definition primi-
tive for example (see §7.1.2 and §8.6). On the other hand, the system has proven
as a robust basis for viable theorem proving environments that take soundness
issues seriously.
Despite being simplistic in several respects, HOL is capable of many sophis-
ticated constructions inside the basic system, without requiring to change its
very foundations. Occasionally, advanced concepts are possible because of seem-
ing weaknesses of HOL, e.g. overloading [Wenzel, 1997] or extensible records
[Naraschewski and Wenzel, 1998].

175

176 CHAPTER 7. The Isabelle/HOL application environment

The Isabelle/HOL formulation [Nipkow et al., 2001] is faithful to the original
HOL family [Gordon and Melham, 1993], although the influence of the Isabelle
system philosophy makes a difference in many details. In particular, special
care has been taken to make the user-experience of HOL closer to traditional
mathematics, e.g. by providing a separate type of sets apart from primitive
predicates, together with common set-theory notation. Thus internal features
of HOL may be largely hidden from the sight of casual readers of Isabelle/HOL
theory developments.
The resulting system of simply-typed set theory is quite convenient to use in re-
alistic applications. Compared to actual (untyped) set-theory (e.g. Isabelle/ZF
[Paulson, 1993] [Paulson, 1995]), HOL avoids a number of complications such as
the non-uniform treatment of propositions versus individuals in first-order logic,
or typing issues that would need to be handled explicitly via set-membership
reasoning instead of static typing.

Subsequently, we point out a few aspects of basic HOL concepts, as relevant
to end-user applications. Further foundational details are discussed within the
Isabelle/Isar example of chapter 8.

7.1.1 Simply-typed set theory

Isabelle/HOL may be best understood as as simply-typed classical set-theory.
The general look-and-feel is close to the original formulation of set-theory ac-
cording to Cantor, where sets and classes are treated uniformly (soundness
of HOL is guaranteed by simple types [Church, 1940]). In particular, set-
comprehension may be used naively, similar to common practice in informal
mathematics. Types may usually be omitted from specifications due to auto-
matic type-reconstruction, similar to ML or Haskell.
Isabelle/HOL provides the following basic notation for forming sets from pred-
icates and general functions.

{x . P x} set comprehension
{f x | x . P x} mapped set comprehension
f ‘ A set image

Further set-theory concepts are written as usual, e.g. membership x ∈ A, union
A ∪ B, intersection A ∩ B, difference A − B, “big” union

⋃
x . B x (over the

type of x), or
⋃

x ∈ A. B x (over the set A). By coincidence, most of the
basic notation of Isabelle/HOL closely follows that of our informal background
language outlined in §2.1.

The pure “logic” of HOL coincides where set-theory notions, with boolean ex-
pressions and predicates replacing sets. Logical notation is fairly standard,
including quantification ∀ x . P x and ∃ x . P x, set-bounded quantification ∀ x ∈
A. P x and ∃ x ∈ A. P x, and the standard connectives of ∧, ∨, −→ etc.

7.1. The HOL logic 177

Note that this internal object-logic of HOL is mostly used for building up com-
plex expressions involving boolean values. The primary rules of reasoning are
typically formulated at the Isabelle meta-level, using

∧
/=⇒ connectives instead

of HOL’s own collection of ∀ , ∃ , −→, ∧, ∨, ¬ etc. The general discipline of
preferring meta-level rules over object-formulae considerably reduces the formal
noise in actual proofs, since the outer structure of logical statements need not
be decomposed explicitly in proofs. The basic mechanism of higher-order back-
chaining of the Isabelle/Pure framework (§2.4) directly operates on such rules
as expected. The Isar proof language (chapter 3) provides immediate links to
the very same principles.
Atomic meta-level propositions require separate concrete syntax of PROP A
(where A is a term of type prop); omitting the PROP marker would make the
proposition “A” an object-logic judgment, where A is a boolean expression.
Note that the latter involves a hidden coercion from bool to prop, which is
traditionally called Trueprop in Isabelle.

Functions play an important role in HOL. The Isabelle version uses mostly stan-
dard notation from λ-lambda calculus, and modern higher-order programming
languages like Haskell or ML (e.g. see [Paulson, 1991]).

f a application
λx . b[x] abstraction
let x = a in b[x] local binding
if A then a else b conditional expression
case p x ⇒ b[x] | . . . simple pattern matching
f (x := y) point-wise functional update

Despite this notational coincidence, HOL does not quite resemble programming
languages. In particular, there is no artificial restriction to computable func-
tions, although this could be easily formalized within HOL, e.g. [Regensburger,
1995] [Müller et al., 1999].
HOL functions are inherently total; partial ones may be easily represented using
the polymorphic option datatype, which consists of None or Some x elements.
The following basic operations are available on the common type ′a ⇒ ′b option,
which may be considered as a the canonical model for partial mappings.

empty ≡ λx . None empty mapping
e (x 7→y) ≡ e (x := Some y) assignment of defined values
dom e ≡ {x . e x 6= None} set of defined values (domain)

7.1.2 Primitive definitions

The HOL logic is based on a tiny axiomatic kernel [Gordon and Melham, 1993]
stating only the most fundamental facts of classical set-theory within a simply-
typed setting. According to established tradition of HOL methodology, any
extensions of existing theories have to be definitional : only certain disciplined
axiom schemes may be given. Thus several important well-formedness properties

178 CHAPTER 7. The Isabelle/HOL application environment

of theories are preserved, without requiring the user to reconsider the full meta-
theory of HOL over and over again.
Formal objects of HOL are differentiated into (simple) types and λ-terms, al-
though both may be interpreted as sets in the standard model theory [Pitts,
1993]. Consequently, there are two separate definitional primitives, namely
constant definitions and type definitions. These mechanisms turn out as quite
dissimilar wrt. the technical specification and meta-theoretical properties.
Isabelle/HOL only provides a separate primitive for type definitions [Nipkow et
al., 2001] [Wenzel, 2001a]. Constant definitions are inherited from Isabelle/Pure
[Paulson, 2001a].

Constant definitions

The constdefs element of Isabelle/Pure provides a user-level interface to basic
constant definitions, including conditional equations (cf. §2.3). The specifica-
tion consists of any number of pairs of constant declaration and definitional
equality; the latter has to cover the same most-general type scheme as given in
the declaration (this restriction prevents unintended overloading).

constdefs

a :: nat

a ≡ 1

b :: nat ⇒ nat

a ≤ n =⇒ b n ≡ n − a

The result of constdefs is a set of theorems, corresponding to the original
equations; each theorem is named after its constant, e.g. a-def and b-def.

The separate consts and defs commands provide direct access to the under-
lying primitives of constant declarations and definitions. Thus definitions may
be given independently of declarations. Several advanced definitional packages
require constants to be declared separately, e.g. inductive (see §7.2.1) and
primrec (see §7.2.2). Furthermore, defs allows multiple definitions to be given
on non-overlapping type schemes by virtue of overloading (cf. §2.3).

consts

c :: ′a

defs (overloaded)

c-nat-def : c :: nat ≡ 0

c-bool-def : c :: bool ≡ False

c-prod-def : c :: ′a × ′b ≡ (c :: ′a, c :: ′b)

An overloaded definition like this entails obvious results about more complex
type instances, essentially via primitive recursion over the syntactic structure
of type expressions.

lemma c :: (nat × bool) × ′a ≡ ((0, False), c :: ′a)

by (simp only : c-nat-def c-bool-def c-prod-def)

7.1. The HOL logic 179

Nothing specific may be derived about unspecified types yet, like c :: ′a ⇒ ′b.
The collection of definitional equations may be augmented incrementally later
on, e.g. as follows.

defs (overloaded)

c-fun-def : c :: ′a ⇒ ′b ≡ λx :: ′a. c :: ′b

It is important to note that overloading inherently introduces underspecifica-
tion in the theory, since it is impossible to cover all possible HOL type schemes
uniformly. Underspecification prevents a number of meta-theoretical proper-
ties of Isabelle/HOL (e.g. preservation of completeness or decidability of certain
sub-theories), but it turns out as very useful in advanced applications like ax-
iomatic type classes [Wenzel, 1997] or object-oriented verification [Naraschewski
and Wenzel, 1998]. In fact, the HOL logic does not admit very strong meta-
theoretical properties in the first place, even in its original formulation [Gordon
and Melham, 1993] [Pitts, 1993] without overloading.

Type definitions

The typedef command of Isabelle/HOL provides a convenient interface to the
specific HOL notion of type definitions (see also §8.6 for foundational issues).
The basic idea is to abstract a non-empty subset of an existing type expression
into a new type. The Isabelle/Isar version admits the required non-emptiness
proof to be performed immediately in the text [Wenzel, 2001a], as indicated in
the example below.

typedef even = {n :: nat . ∃ k . n = 2 ∗ k}
proof

show 0 ∈ ?even by simp

qed

While the poof obligation of typedef is actually an abstract existential state-
ment, it has been reduced in the initial proof step to demand a concrete witness
(via ∃ introduction). The subsequent show statement takes care of this main
aspect of the typedef proof. Note that the term abbreviation ?even of the
representing set is made available in the initial proof context automatically.

The result of the above typedef is a new type even according to the principle of
HOL type definitions (see §8.6), as well as a constant constant definition of the
same name for the representing set within the old type. Rules that characterize
bijections (Abs-even and its inverse Rep-even) between the representing set and
the new type are provided as well.
The internal bijection axioms (see §8.6.1) are slightly too primitive for direct
use. Isabelle/Isar provides alternative formulations that are suitable for high-
level reasoning. In particular, the surjection part will be expressed as rules for
cases and induction in order to support canonical representation proofs (cf. §5.3
and §5.4). This is illustrated for even by the subsequent proof patterns.

180 CHAPTER 7. The Isabelle/HOL application environment

obtain b where a = Abs-even b and b ∈ even

by (cases a)

fix b assume b ∈ even

then obtain a where b = Rep-even a

by cases

fix x :: even

have P x

proof (induct x)

fix y assume y ∈ even

thus P (Abs-even y) 〈proof 〉
qed

fix y assume y ∈ even

hence P y

proof induct

fix x

show P (Rep-even x) 〈proof 〉
qed

The cases and induct versions are essentially equivalent, due the degenerate
representation (without recursion) involved here. Nevertheless, both formats
have their use in actual applications. Cases are usually better suited to repre-
sent concrete expressions of the new type or the representing set, respectively.
Induction is more appropriate to establish universal properties.

7.2 Advanced definitional packages

In principle, the primitive definitional mechanisms for constant and type defini-
tions given in §7.1.2 are already sufficient to build up substantial applications on
top of basic HOL, while proceeding in a disciplined manner without ad-hoc ax-
iomatization of new concepts. In reality, further advanced definitional concepts
are required to support sizable developments.
Several derived definitional mechanisms have emerged in the HOL tradition
over many years [Gordon, 2000], most notably those of inductive sets and types
together with recursive functions; see also the outline given in [Berghofer and
Wenzel, 1999]. It is important to note that such high-level concepts are usually
built on top of existing primitives; the meta-theory of HOL need not be recon-
sidered by those who develop new packages. Implementors do not even need to
understand the HOL logic in every detail, some rough idea of typed set-theory
will be sufficient for most purposes.

See figure 7.1 for the collection of advanced definitional packages provided by
Isabelle/HOL. Here constdefs and typedef are taken as primitives (cf. §7.1.2).

7.2. Advanced definitional packages 181

The others will be briefly reviewed below, with some focus on specific details
that are particularly relevant to Isar.

constdefs

typedefcoinductive inductive

datatype

recdef recordprimrec

axclass

Figure 7.1: Definitional packages of Isabelle/HOL

7.2.1 Inductive sets and types

The most fundamental advanced definitional mechanisms of Isabelle/HOL are:
inductive (and coinductive) for sets defined via Knaster-Tarski fixed-points
[Paulson, 1994], and datatype for arbitrarily branching tree types (optionally
with mutual or indirect recursion). See [Berghofer and Wenzel, 1999] for a more
detailed exposition of various classes of datatype definitions in HOL. Note that
there is presently no package for co-datatypes, even co-inductive sets are rarely
used in existing Isabelle/HOL applications.

Inductive sets

The inductive package takes a collection of introduction rules specified in the
theory text; internally it produces a number of basic definitions for least-fixed
points on the complete lattice of power sets (e.g. see [Davey and Priestley, 1990]);
it then automatically proves the introduction rules as specified in the text,
together with canonical eliminations (resulting from the fixed-point equation),
and the induction rule (from the least fixed-point property). Eliminations are
declared as standard rules for the cases method, likewise is induction for the
induct method (cf. §5.4).
The original version of inductive [Paulson, 1994] has been improved to allow
nesting of standard logical connectives (including quantifiers), where the canon-
ical polarity rules are handled automatically in the internal monotonicity proof
[Berghofer and Wenzel, 1999]. Most importantly, the meta-logical connectives
=⇒/

∧
may be involved as well, allowing arbitrarily nested rules to be given

as introductions [Wenzel, 2001a]. In particular, infinitely branching inductive
definitions may be expressed quite naturally, without recourse to separate con-
nectives of the object-logic.

182 CHAPTER 7. The Isabelle/HOL application environment

To illustrate the latter technique we present a definition of the σ-algebra gener-
ated by a given collection of basic sets (this is a standard mathematical concept
of measure theory). The most interesting case is that of Union given below,
where the inductive parameter is indexed over type nat.

consts

sigma-algebra :: ′a set set ⇒ ′a set set

inductive sigma-algebra A

intros

basic: a ∈ A =⇒ a ∈ sigma-algebra A

UNIV : UNIV ∈ sigma-algebra A

complement : a ∈ sigma-algebra A =⇒ −a ∈ sigma-algebra A

Union: (
∧

i ::nat . a i ∈ sigma-algebra A) =⇒ (
⋃

i . a i) ∈ sigma-algebra A

The following proof illustrates how these introductions may be used as ordinary
inference rules, while we establish the dual of Union via the de-Morgan property
of sets.

theorem Inter : (
∧

i ::nat . a i ∈ sigma-algebra A) =⇒ (
⋂

i . a i) ∈ sigma-algebra A

proof −
assume

∧
i ::nat . a i ∈ sigma-algebra A

hence
∧

i ::nat . −(a i) ∈ sigma-algebra A by (rule complement)

hence (
⋃

i . −(a i)) ∈ sigma-algebra A by (rule Union)

hence −(
⋃

i . −(a i)) ∈ sigma-algebra A by (rule complement)

also have −(
⋃

i . −(a i)) = (
⋂

i . a i) by simp

finally show ?thesis .

qed

Apparently, the proof works out in a straight-forward manner by a number of
meaningful steps, without requiring any unexpected formal twists. In contrast,
the subsequent version uses alternative formulations of Union and Inter, where
the infinite branching over natural numbers is expressed within the object-logic
via separate ∀ (according to existing practice of Isabelle/HOL).

lemma Union ′: ∀ i ::nat . a i ∈ sigma-algebra A =⇒ (
⋃

i . a i) ∈ sigma-algebra A

〈proof 〉

lemma Inter ′: ∀ i ::nat . a i ∈ sigma-algebra A =⇒ (
⋂

i . a i) ∈ sigma-algebra A

proof −
assume ∀ i ::nat . a i ∈ sigma-algebra A

hence
∧

i ::nat . a i ∈ sigma-algebra A .. — formal noise

hence
∧

i ::nat . −(a i) ∈ sigma-algebra A by (rule complement)

hence ∀ i ::nat . −(a i) ∈ sigma-algebra A .. — formal noise

hence (
⋃

i . −(a i)) ∈ sigma-algebra A by (rule Union ′)

hence −(
⋃

i . −(a i)) ∈ sigma-algebra A by (rule complement)

also have −(
⋃

i . −(a i)) = (
⋂

i . a i) by simp

finally show ?thesis .

qed

7.2. Advanced definitional packages 183

We see that introduction and elimination of ∀ has to be taken care of explicitly.
This was not required in our original version, since basic inferences of the pure
framework already handle local =⇒/

∧
contexts as expected (§2.4).

Strictly speaking, the proof above still relies on uniform treatment of non-atomic
statements within Isar proof texts (cf. §5.2.5). Suppressing this as well, we would
get an even more cumbersome proof of Inter ′ as follows.

lemma Inter ′: ∀ i ::nat . a i ∈ sigma-algebra A =⇒ (
⋂

i . a i) ∈ sigma-algebra A

proof −
assume a: ∀ i ::nat . a i ∈ sigma-algebra A

have ∀ i ::nat . −(a i) ∈ sigma-algebra A

proof

fix i from a have a i ∈ sigma-algebra A ..

thus −(a i) ∈ sigma-algebra A by (rule complement)

qed

hence (
⋃

i . −(a i)) ∈ sigma-algebra A by (rule Union ′)

hence −(
⋃

i . −(a i)) ∈ sigma-algebra A by (rule complement)

also have −(
⋃

i . −(a i)) = (
⋂

i . a i) by simp

finally show ?thesis .

qed

Here all statements in the text (except the main one) have become atomic propo-
sitions. While this does not pose any fundamental limitation “in principle”, it
makes a big difference for general usability of the system in practice.
On the other hand, the additional formal twists due to object-level connectives
exposed in this example would not make a big difference for traditional Isabelle
proof scripts, as these usually contain a large number of technical clarification
steps anyway. Unstructured proof scripts tend to contain lots of formal noise
unnoticed.

We shall also take a brief look at the induction rule emerging from the above
inductive definition:

x ∈ sigma-algebra A =⇒
(
∧

a. a ∈ A =⇒ P a) =⇒
P UNIV =⇒
(
∧

a. a ∈ sigma-algebra A =⇒ P a =⇒ P (− a)) =⇒
(
∧

a. (
∧

i . a i ∈ sigma-algebra A) =⇒ (
∧

i . P (a i)) =⇒ P (
⋃

i . a i)) =⇒ P x

Naturally, the nesting of meta-level connectives given in the specification of
introductions carries over to induction as well. Users of traditional Isabelle
proof scripts would normally abhor complex meta-level statements of this kind,
due to the inherent limitation of basic tactics to rules that consist of atomic
statements only [Paulson and Nipkow, 1994]. As already pointed out before,
it is easy to cope with this situation in proper Isar proof texts, since there is
nothing special about non-atomic propositions (§5.2.5); the induct method takes
special care to preserve this uniform view on non-atomic statements (§5.4.5).

184 CHAPTER 7. The Isabelle/HOL application environment

The induction rule for sigma-algebra A is already declared for use in standard
elimination patterns of induction (§5.4). Thus we may perform “rule induction”
wrt. the definition of sigma-algebra A as follows.

assume x ∈ sigma-algebra A

hence P x

proof induct

fix a assume a ∈ A

thus P a 〈proof 〉
next

show P UNIV 〈proof 〉
next

fix a assume a ∈ sigma-algebra A and P a

thus P (−a) 〈proof 〉
next

fix a assume
∧

i ::nat . a i ∈ sigma-algebra A and
∧

i . P (a i)

thus P (
⋃

i . a i) 〈proof 〉
qed

As the inductive assumptions and side-conditions directly reflect the textual
complexity of inductive definition, we may consider to use the infrastructure
of symbolic case names offered by the induct method (cf. §5.4).

assume x ∈ sigma-algebra A

hence P x

proof (induct (open) P x)

case basic

thus P a 〈proof 〉
next

case UNIV

thus P UNIV 〈proof 〉
next

case complement

thus P (−a) 〈proof 〉
next

case Union

thus P (
⋃

i . a i) 〈proof 〉
qed

This compact induction pattern requires additional instantiations of P and x
given in advance. Furthermore, we have also declared the scope of local param-
eters to be “(open)”, which makes the terminology of local parameters from the
original inductive definition appear implicitly in the proof text (cf. §5.4.4).

Inductive types

The datatype package of Isabelle/HOL provides a convenient interface for a
very general class of tree structures represented in classical set-theory. Only

7.2. Advanced definitional packages 185

the collection of constructors (with types) has to be specified by the user. The
internal construction is based on inductive definitions over a set-theoretic uni-
verse that has been defined within HOL beforehand [Paulson, 1994] [Berghofer
and Wenzel, 1999], the result is then abstracted via the typedef primitive (cf.
§7.1.2). Furthermore, a large number of additional infrastructure is derived
automatically behind the scenes, including induction rules and support for re-
cursion (both primitive and general well-founded one, see also §7.2.2).

In practice, the most important datatype is that of lists over some existing
type. The subsequent definition of ′a list has been taken from the main library
of Isabelle/HOL [Nipkow et al., 2001].

datatype ′a list =

Nil ([])

| Cons ′a ′a list (infixr # 65)

The induction provided by this definition has already been declared for use
in plain introduction patterns of the induct method (cf. §5.4). Thus we may
perform standard structural induction as follows.

have P xs

proof (induct xs)

show P [] 〈proof 〉
next

fix x xs assume P xs

thus P (x # xs) 〈proof 〉
qed

Since datatype supports arbitrary branching (over any existing HOL type), the
issues raised in the previous discussion of complex meta-level rules arising from
inductive definition essentially apply here as well, albeit to a lesser degree.
The basic inductive structure underlying datatype definitions is much simpler
than common inductive ones.
Consider the subsequent example of nested partial functions as one of the more
complex cases encountered in practice so far (see the theory Nested-Environment
in [Bauer et al., 2001], and the application in chapter 10).

datatype (′a, ′b, ′c) env =

Val ′a

| Env ′b ′c ⇒ (′a, ′b, ′c) env option

The main induction rule of type env involves a nested meta-level
∧

-quantifier
corresponding the indirect recursion via a function type in the second case.

(
∧

a. P1 (Val a)) =⇒
(
∧

b fun. (
∧

x . P2 (fun x)) =⇒ P1 (Env b fun)) =⇒
P2 None =⇒ (

∧
env . P1 env =⇒ P2 (Some env)) =⇒ P1 env

Such higher rules work very well in Isar proof texts, see also the full theory
of nested environments in [Bauer et al., 2001]. Certainly, traditional Isabelle

186 CHAPTER 7. The Isabelle/HOL application environment

tactic scripts would quickly run into serious inconveniences due to the negative
nesting of meta-level connectives.

7.2.2 Recursive function definitions

Primitive recursion

The datatype package (cf. §7.2.1) provides standard combinators for structural
primitive recursion. In fact, primitive recursion covers a very large range of
function definitions within the higher-order framework of HOL. Also note that
there is no inherent restriction to computable functions involved here.
The primrec package offers a simple user-interface for this definitional mecha-
nism, requiring only the intended equations to be given by the user; these are
used to determine the primitive definition inside, and are returned as proven the-
orems [Nipkow et al., 2001]. See also [Berghofer and Wenzel, 1999] for a more
extensive discussion of both datatype and primrec, including some further
issues of seamless integration of several definitional packages.

As a simple example of primrec we define the append function over ′a list
as introduced before (cf. §7.2.1). Here the recursion operates over the first
argument, where we need to give canonical constructor patterns of the datatype.
The second argument is a fixed parameter of the recursive definition. This
specification coincides with the official one of Isabelle/HOL [Nipkow et al., 2001].

consts

append :: ′a list ⇒ ′a list ⇒ ′a list (infixr @ 65)

primrec

[] @ ys = ys

(x # xs) @ ys = x # (xs @ ys)

The primrec equations are available as a list of theorems called append .simps;
these facts are also declared as standard simplification rules (see also §7.3). Con-
sequently, the Simplifier essentially performs βι-reduction by default (speaking
in terms of Coq [Barras et al., 1999]).

Apart from simplification, the canonical technique to establish results about
primrec functions is to use the generic datatype induction rule, which may be
accessed via the standard introduction pattern of the induct method (cf. §5.4).

theorem append-assoc: (xs @ ys) @ zs = xs @ (ys @ zs) (is ?P xs)

proof (induct xs)

show ?P [] by simp

next

fix x xs assume ?P xs

thus ?P (x # xs) by simp

qed

Alternatively, we may invoke the infrastructure of symbolic cases offered by the
induct method, provided that a full instantiation is given in advance. Since

7.2. Advanced definitional packages 187

the default terminology of local parameters produced by the datatype package
is somewhat cryptic (being derived from the names of types involved in the
inductive structure) we would better use the renamed rule associated with the
primrec definition itself.

theorem (xs @ ys) @ zs = xs @ (ys @ zs) (is ?P xs)

proof (induct (open) ?P xs rule: append .induct)

case Nil

thus ?P [] by simp

next

case Cons

thus ?P (x # xs) by simp

qed

Apparently, the latter scheme is slightly more heavyweight than the previous
version. In practice, this pattern of referring to implicit parameters should be
mainly useful with more complex structures than plain lists encountered here.

General recursion

Apart from higher-order primitive recursion, Isabelle/HOL also provides gen-
eral well-founded function definitions via Slind’s recdef package (which is also
known as “TFL”) [Slind, 1996] [Slind, 1997]. The main advantages of recdef
over primrec are the theoretically more general recursion scheme, and general
pattern matching of constructor expressions given in the function arguments
(including overlapping patterns with left-to-right precedence).
The user-interface of recdef is similar to primrec: given a number of equations,
the package performs appropriate primitive definitions inside, and returns the
result as proven theorems. The exact collection of resulting rules may vary from
the original specification, though, depending on the unwinding of constructor
patterns performed internally.

Due to the very general approach of recdef , its internal proof process turns out
to be quite complicated in practice: recdef hardwires rather heavy automated
proof tools that happens to work well for most simple cases, but are hard to
control by users in general. The internal proof process consists of multiple
stages, including well-foundedness of the determined recursion behavior of the
function definition, as well as actual termination wrt. that relation. Following
the tradition of fully automated reasoning here, these proof obligations need to
be finished by standard tactics inside, which may only be controlled indirectly
by additional hints to be given beforehand.
See also [Nipkow et al., 2001] and [Nipkow and Paulson, 2001] for further expla-
nations on how to make recdef work in practice. Note that the original version
of the TFL package [Slind, 1996] [Slind, 1997] draws from the Gordon HOL
tradition of system organization [Gordon and Melham, 1993] [Gordon, 2000],
rather than the Isabelle one.

188 CHAPTER 7. The Isabelle/HOL application environment

We argue that slightly better integration of recdef with the Isar proof language
needs to be provided before the powerful definitional mechanism of TFL may
get used more widely in Isabelle/HOL. Essentially, the proof process needs to
be presented as an Isar goal statement (maybe with auxiliary proof context
declarations to accommodate the different stages), similar to typedef (§7.1.2)
or instance (see §7.2.4). The resulting infrastructure should enable users to
finish simple recursive definitions by canonical automated proofs like “by simp”
or “by auto”, or be able to decompose complex ones into well-defined sub-
problems. See also §7.5.1 for further discussion of the practically important
issue of advanced specification mechanisms versus interactive proof.

7.2.3 Extensible records

Record types provide a high-level view on properly nested pairs, with separate
operations for field selection and update [Naraschewski and Wenzel, 1998]. In
Isabelle/HOL record types need to be declared explicitly via the record package
as illustrated below.

record foo =

x :: nat

y :: nat

z :: nat

This definition introduces type foo with notation (|x :: nat , y :: nat , z :: nat |).
Concrete record expressions may be written as (|x = a, y = b, z = c|), the
function foo.make :: nat ⇒ nat ⇒ nat ⇒ foo yields the very same result.
Fundamental record operations include selection and update, both are named
after the fields involved. For example, x :: foo ⇒ nat and x-update :: nat ⇒
foo ⇒ foo; an expression x-update a r may be written as r (|x := a|). Nested
updates r (|x := a, y := b|) are available as well; here fields may be repeated
and given in any order.

Record types and operations are polymorphic wrt. the “rest” of the nested field
constructors involved. Due to the way that simple types (and type inference)
work in HOL, this is already sufficient to provide a very useful notion of exten-
sible records essentially for free [Naraschewski and Wenzel, 1998]. For example,
we may add further fields to the existing record type foo as follows.

record bar = foo +

w :: bool

Since bar is a proper type instance of foo, we may apply the previous operations
without further ado. Both selectors and updates may be transferred to the
extended record type, just by virtue of schematic polymorphism.

have y (|x = a, y = b, z = c, w = d |) = b

by simp

7.2. Advanced definitional packages 189

have (|x = a, y = b, z = c, w = d |) (|y := b ′|) =

(|x = a, y = b ′, z = c, w = d |)
by simp

The “rest” of a record type may be accessed directly as well, using the improper
more field; concrete record notation uses “. . . ” (three dots) here. For example,
general schemes of foo are written as (|x :: nat , y :: nat , z :: nat , . . . :: ′a|) for
types and (|x = a, y = b, z = c, . . . = rest |) for term expressions.

See also [Naraschewski and Wenzel, 1998] for further discussion of extensible
record types in simply-typed HOL, including applications to hierarchies of math-
ematical structures, and object-oriented verification.

7.2.4 Axiomatic type classes

Apart from simple types and λ-terms already present in traditional HOL formu-
lations, the Isabelle version provides a third syntactic layer of order-sorted type
classes [Nipkow, 1993] [Nipkow and Prehofer, 1993]. First of all, type classes
merely provide a separate qualification of HOL types, without any immediate
logical impact yet. Based on a few simple observations of naive polymorphism
in HOL, general classes (and relations) of types may be represented within the
meta-logic. Thus one may give an immediate interpretation of the concepts
of order-sorted type signatures as propositions of the pure logical framework
[Wenzel, 1997].
The latter observation gives rise to separate specification elements of axclass
and instance, for definition of “axiomatic” type classes and instantiation (with
proof), respectively [Wenzel, 2001a]. With overloaded constant definitions (cf.
§2.3), one arrives at a light-weight mechanism of abstract theories that is tightly
integrated with the Isabelle type system [Wenzel, 1997] [Wenzel, 2001e].

We briefly review the canonical example of abstract algebraic structures, namely
monoids and groups. First of all, we declare polymorphic operations, and define
axiomatic type classes as predicates over these. The “argument” of a type class
is the polymorphic type parameter involved here. Note that term refers to the
universal (syntactic) class of Isabelle/HOL types.

consts

product :: ′a ⇒ ′a ⇒ ′a (infixl ◦ 70)

inverse :: ′a ⇒ ′a ((-−1) [1000] 999)

unit :: ′a (1)

axclass monoid ⊆ term

assoc: (x ◦ y) ◦ z = x ◦ (y ◦ z)

left-unit : 1 ◦ x = x

right-unit : x ◦ 1 = x

190 CHAPTER 7. The Isabelle/HOL application environment

axclass group ⊆ term

assoc: (x ◦ y) ◦ z = x ◦ (y ◦ z)

left-unit : 1 ◦ x = x

left-inverse: x−1 ◦ x = 1

We may now derive abstract properties based on this axiomatization, such as
the fact x ◦ x−1 = 1 of general group theory.

theorem group-right-inverse: (x :: ′a::group) ◦ x−1 = 1

proof −
have x ◦ x−1 = 1 ◦ (x ◦ x−1)

by (simp only : group.left-unit)

also have . . . = (1 ◦ x) ◦ x−1

by (simp only : group.assoc)

also have . . . = (((x−1)−1 ◦ x−1) ◦ x) ◦ x−1

by (simp only : group.left-inverse)

also have . . . = ((x−1)−1 ◦ (x−1 ◦ x)) ◦ x−1

by (simp only : group.assoc)

also have . . . = ((x−1)−1 ◦ 1) ◦ x−1

by (simp only : group.left-inverse)

also have . . . = (x−1)−1 ◦ (1 ◦ x−1)

by (simp only : group.assoc)

also have . . . = (x−1)−1 ◦ x−1

by (simp only : group.left-unit)

also have . . . = 1

by (simp only : group.left-inverse)

finally show ?thesis .

qed

It is easy to see that groups are monoids as well, since the right-unit property
may be derived as a theorem (using group-right-inverse from above). This
inclusion may be formally reflected within the Isabelle type signature [Wenzel,
1997], including a separate instance proof as given below.

instance group ⊆ monoid

proof

fix x y z :: ′a::group

show (x ◦ y) ◦ z = x ◦ (y ◦ z) by (rule group.assoc)

show 1 ◦ x = x by (rule group.left-unit)

show x ◦ 1 = x

proof −
have x ◦ 1 = x ◦ (x−1 ◦ x)

by (simp only : group.left-inverse)

also have . . . = (x ◦ x−1) ◦ x

by (simp only : group.assoc)

also have . . . = 1 ◦ x

by (simp only : group-right-inverse)

7.3. Automated proof methods 191

also have . . . = x

by (simp only : group.left-unit)

finally show ?thesis .

qed

qed

Concrete instantiations of axiomatic type classes may be given as well. Below
we present the type of lists (over arbitrary argument types) as a monoid by
defining ◦ as append and 1 as nil. Note that this instantiation technique relies
on overloaded constant definitions in generic HOL [Wenzel, 1997] (cf. §2.3).

defs (overloaded)

product-list-def : xs ◦ ys ≡ xs @ ys

unit-list-def : 1 ≡ []

instance list :: (term) monoid

proof

fix xs ys zs :: ′a list

show (xs ◦ ys) ◦ zs = xs ◦ (ys ◦ zs)

by (simp only : product-list-def append-assoc)

show 1 ◦ xs = xs

by (simp only : product-list-def unit-list-def append .simps)

have xs @ [] = xs by (induct xs) simp-all

thus xs ◦ 1 = xs

by (simp only : product-list-def unit-list-def)

qed

Due to the very nature of overloaded definitions, instantiations for concrete
structures may be only given once for each non-overlapping pattern of types
[Wenzel, 1997] [Wenzel, 2001e]. Multiple views on the same HOL type would
typically require isomorphic copies via typedef or datatype. Moreover, HOL
type constructors may act like “functors” on type classes, as in the canonical
example of direct binary products like ∗ :: (monoid , monoid) monoid.
See also [Wenzel, 2001b] for a development of basic lattice theory that demon-
strates further advanced techniques of axiomatic type classes.

7.3 Automated proof methods

The HOL logic turns out as a viable platform for a broad range of existing
automated reasoning techniques. Generic Isabelle provides two main modules
to build up powerful proof tools for object-logics: the “Simplifier” [Paulson and
Nipkow, 1994] and the “Classical Reasoner” [Paulson, 1997]; the latter includes
an advanced implementation based on existing tableau prover technology [Paul-
son, 1999]. Combinations of generic automated proof tools are available as well.

192 CHAPTER 7. The Isabelle/HOL application environment

From this perspective, a low-level presentation of Isabelle/HOL via primitive
axioms and derived rules (chapter 8) loses some significance to end-users, al-
though certain inherent virtues of primitive HOL simplify the construction of
proof tools considerably (e.g. the syntactic treatment of types [Lamport and
Paulson, 1999]).

7.3.1 Incorporating arbitrary proof tools

The pure Isar framework is independent of any particular object-logic features
and specific prover support. The key concepts of Isar proof processing (cf.
§3.2.3) merely depend on the generic mechanisms of higher-order unification
and back-chaining, which may be even understood as the most basic principles
of (nested) natural deduction [Paulson, 1986] [Paulson, 1989] [Paulson, 1990].
Arbitrary proof tools may be incorporated into Isar via the interface of proof
methods (cf. the interpretationM in §3.2.3). It is technically quite easy to turn
existing Isabelle tactics into Isabelle/Isar methods [Wenzel, 2001a]. On the
other hand, some care is required in order to achieve an appropriate high-level
view on the large number of variant forms of tactics and tactic combinations
that have emerged over time in Isabelle [Paulson, 2001b].

Isabelle/Isar follows a certain classification scheme of proof methods as outlined
below (see §7.3.2). Rarely used variants are incorporated into the main methods
via separate arguments and options. Thus Isar offers the user some choice from
a collection of automated tools that is relatively easy to oversee.

Note that Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993] [Wiedijk,
1999] and DECLARE [Syme, 1997a] [Syme, 1998] [Syme, 1999] essentially pro-
vide only a single builtin proof tool for solving terminal obligations, where only
some additional parameters (facts and hints) may be given by the user. This
policy takes the issue of “declarative theorem proving” very seriously, since it
liberates the user from specifying operational details.
On the other hand, practical experience with Isabelle/Isar has shown that the
overall robustness of mechanized proof processing may be improved by leaving
the user some choice of adequate means for specific problems. As a general rule
of thumb, simpler methods should be preferred over complex ones, e.g. single
rules or plain rewriting instead of heavy combinations of simplification and
classical reasoning. This is essentially Occam’s razor applied to proof methods.
Consequently, the resulting Isar proof texts are not only processed more quickly,
but also provide additional clues about the level of complexity of particular
problems. For example, DECLARE would essentially refer to “by auto” all the
time, where Isar admits to differentiate the complexity of proofs ranging over
“by blast” and “by simp”, down to “..” and “.”.

A completely different issue than incorporating existing proof methods is that of
actually writing new ones. High-level specification of general proof procedures is

7.3. Automated proof methods 193

definitely outside the present scope of Isar. Note that the present Isar framework
natively supports derived rules of the meta-logic (§5.2.5), which already covers
many practically relevant situations where one might have considered specific
methods a requirement at first sight.
The current Isabelle/Isar implementation requires some ML programming to
include new proof methods [Wenzel, 2001a], although this is usually only done
by those who start an object-logic from scratch, or extend an existing one sig-
nificantly. An end-user environment like Isabelle/HOL is already sufficiently
equipped to support a broad range of Isabelle/Isar applications, without de-
manding the user to extend the system by separate ML programming. The
generic tools of Isabelle turn out as sufficiently flexible in practice. For exam-
ple, normalization wrt. associativity and commutativity may be easily achieved
via ordered rewriting with Isabelle’s Simplifier [Paulson, 2001b] without requir-
ing any ad-hoc programming as proposed in [Zammit, 1999b].
On the other hand, high-level representations of proof procedures could com-
plement the primary Isar proof language in a useful manner. Approaches that
internalize procedures into the base logic (e.g. [Barendregt et al., 1995] [Ruys,
1999]) could be used within the Isar setting on top of a suitable object-logic
with support for reflection principles. An alternative may be to extend the
primary Isar language itself to cover method definitions as well, similar to the
specification format for proof procedures proposed in [Arkoudas, 1998].

7.3.2 Basic types of proof methods

The Isar framework already includes a few fundamental proof methods (§3.3.2)
that either refer to the key concept of higher-order backchaining in various ways
(this, rule, assumption), or perform normalization wrt. a collection of meta-level
equalities (unfold, fold). Some further methods have already been provided as
a more abstract view on top of these, notably cases and induct (§5.4).
In contrast, automated proof methods may perform numerous basic inferences
inside, usually guided by additional rule declarations given in the present con-
text (with classification according to the intended use rules as simplifications,
introductions, eliminations etc.). Furthermore, automated procedures are gen-
erally prone to require long runtime (due to advanced heuristics and extensive
proof search), or may even diverge on particular problem classes.

In order to arrive at a reasonably policy to incorporate the multitude of existing
Isabelle tactics into Isar, we now introduce the following classification scheme
of automated proof methods.
First of all, methods may either simplify or solve goals. Here “simplification”
means that individual goals may be replaced by any number of new ones (e.g.
by normalization wrt. a certain collection of rules, splitting structural case ex-
pressions, or logical decompositions according to standard introductions and
eliminations). In reality, the resulting statements might appear to the user as

194 CHAPTER 7. The Isabelle/HOL application environment

more complicated rather than simpler. Unlike internal simplification tactics in
Isabelle [Paulson, 2001b], Isar requires simplification to make actual progress,
i.e. unchanged goal configurations cause the process to fail altogether. The for-
mer behaviour may be recovered via the “?” method combinator (cf. §3.3.2).
“Solving” a goal makes it disappear altogether; note that this may influence
other goals due to instantiation of schematic variables in the proof state.
Furthermore, we distinguish the range of goals addressed by a method, covering
either the head (first subgoal) or all subgoals. Note that arbitrary goal address-
ing is considered inappropriate for Isar proof texts. Reconsidering the standard
terminal proof pattern of “by m1 m2” (§3.3.3), Isar methods either occur ini-
tially (like m1) with only a single subgoal present, or terminally (like m2) where
all remaining goals essentially need to be covered simultaneously. Proof scripts
emulated within Isabelle/Isar may refer to the improper commands of prefer
and defer to shuffle subgoals at will, see also [Wenzel, 2001a].

Methods

Isabelle/HOL provides the following collection of advanced proof methods for
use in Isar, based on the Simplifier and Classical Reasoner inside.

method focus kind
simp simplifies head simp
simp-all simplifies all simp
clarify simplifies head classical
safe simplifies all classical
auto simplifies all simp + classical
blast solves head classical
force solves head simp + classical

In practice, the non-solving classical methods (clarify and safe) are mainly used
for exploration, or tactic script emulation within Isar. Several further methods
are required for porting of legacy scripts, like fast, best, slow etc. [Wenzel, 2001a].
New Isar applications may be conducted with a significantly reduced collection
(essentially simp, blast, auto), since structured Isar proofs generally demand
much less fiddling of the exact operational behaviour of automated methods.
Note that separate methods for “solves all” are not needed in practice, since
repeated application of “solves head” versions already have a similar effect. E.g.
we may refer to “blast+” instead of providing a separate version of blast-all.

Methods of the “simplifies all” focus (most notably auto) are apt to notorious
inconveniences when used in unstructured proof scripts. The problem is that
auto touches all existing subgoals, replacing them by a probably large number
of new ones that do not necessarily look that “simple” after all. The goal
configurations tends to be blown up and lose any previous structure, making it
hard to continue the script by further method applications afterwards. Proper
Isar proofs do not suffer from this problem, since modularity of structured

7.3. Automated proof methods 195

proof processing limits the scope of methods to isolated sub-proofs (which are
statically delimited in the text). Thus the common Isar idiom of “by auto”
essentially puts auto in a “sandbox”. So this discipline turns a potentially
hazardous procedure into a viable multi-purpose proof tool.

Attributes

The above collection of proof methods are subject to specific context information
for standard rule declarations, using the data field within the global theory or
the local proof context (cf. §3.2.2 and §3.2.3). Rule declarations are managed
via separate attributes as outlined below, see also [Wenzel, 2001a].

attribute description

kind simp:
simp add add simplification rule
simp del delete ditto
split add add case-splitting rule
split del delete ditto

cong add add congruence rule
cong del delete ditto
kind classical :
intro add introduction rule
elim add elimination rule
dest add destruction rule
rule del delete classical rule

kind simp + classical :
iff add add simultaneous simplification +

introduction/elimination
iff del delete ditto

Attributes “xxx add” may be abbreviated as xxx. The classical declarations of
intro/elim/dest may include “!” or “?” modifiers to indicate especially high
or low priorities, respectively; similarly for “iff?” versus iff. See also [Paulson,
2001b] and [Wenzel, 2001a] for further details on the exact role of these different
kinds of rule declarations. Note that such subtleties are mainly relevant for Isar
writers only. Readers may just choose to ignore certain annotations, but merely
observe that rules may get used somehow later on.

Arguments and facts

Method arguments admit to augment rule declarations for immediate use, fully
analogous to the above attributes. For example, consider a proof context dec-
laration like “note a [intro] and b [elim]” versus a method invocation like

196 CHAPTER 7. The Isabelle/HOL application environment

“by (blast intro: a elim: b)”. See [Wenzel, 2001a] for concrete syntax specifica-
tions.
Simplifier arguments provide a separate short-hand: the method specification
“(simp add : a)” refers to the recurrent pattern of adding simplification rules,
instead of the more logical (but cumbersome) forms of “(simp simp: a)” or even
“(simp simp add : a)”. The special case “(simp only : a)” refers to simplification
without any other rules than a. This achieves another “strength reduction”
of Isabelle’s Simplifier that turns out as quite handsome in many applications,
since unexpected simplifications from the global context are excluded.

Facts offered to automated methods via forward chaining (involving Isar’s then
primitive) are not treated specifically, but are merely inserted into the goal con-
figuration as local premises just before the actual proof procedure is invoked.
It is very important to note that any further facts available in the Isar proof
context are never used silently. This policy enables the writer to indicate the
“relevance of facts” explicitly in the proof text, which turns out as an impor-
tant aspect of readability of formal documents that involve notoriously obscure
automated reasoning tools (see also the detailed discussion in §7.5.2).

7.4 The main Isabelle/HOL library

Theoretical expositions of formal logic usually include an extensive discussion
of the primitive axiomatic basis, together with meta-theoretical properties of
the deductive systems, and maybe some model theory. In contrast, applied
logic should eventually reach a stage where such foundational details become
much less important than the concrete theory environment offered to end-users.
The very core principles may still have some impact on how advanced concepts
may get implemented, especially definitional packages (§7.2) and proof methods
(§7.3), but most users would not care too much about foundations as long as
they get a system that fits their needs for realistic applications.
Concerning Isabelle/HOL [Nipkow et al., 2001] the main library (of Isabelle99-2)
consists of a DAG structure of 47 theory nodes, as presented in figure 7.2. Only
3 of these contribute to the axiomatic basis of the very HOL logic: HOL for the
basic axioms according to [Gordon and Melham, 1993], Set for an isomorphic
copy of predicates as type ′a set, and NatDef for a type of individuals with
the axiom of infinity. The remaining 44 theories are required to bootstrap a
reasonable working environment, with definitions of pairs, disjoint sums, natural
numbers, support for inductive sets, general datatypes, and recursive functions.

In fact, the dependency graph of definitional packages (cf. §7.2) is intertwined
with that of theories given in figure 7.2: advanced packages usually require some
basic concepts to start with. This easily leads into quasi-circular dependencies,
which need to be untangled either by clever arrangement of basic concepts
[Harrison, 1996a], or by special provisions of “inverted” definitions [Berghofer
and Wenzel, 1999].

7.4. The main Isabelle/HOL library 197

HOL

Ord

Set

subset

equalities

mono

Inverse_Image

Fun

Product_Type

Lfp Relation

Transitive_Closure

Wellfounded_Recursion

NatDef

Gfp

Sum_Type

Inductive

Nat

NatArith

Datatype_Universe

Datatype

Option

Divides

Power

SetInterval

Finite

Wellfounded_Relations Equiv

IntDef

Int

Numeral

Bin

IntArith

Recdef

IntDiv

IntPower

NatBin

NatSimprocs

Record

Relation_Power

Calculation

SVC_Oracle

PreList

List

Map String

Main

[Pure]

Figure 7.2: Main theory library of Isabelle/HOL

198 CHAPTER 7. The Isabelle/HOL application environment

For example, datatype definitions require natural numbers internally, but the
same type nat needs to be treated like a genuine datatype later on. This is
achieved via rep-datatype in Isabelle/HOL, which takes an existing type with
canonical theorems (covering freeness and induction) and retro-fits the remain-
ing infrastructure of actual datatype definitions. Thus the primitively defined
type nat may participate in primrec or recdef as well. It really behaves as if
it had been defined like this.

datatype nat = 0 | Suc nat

The deeper reason for the substantial efforts of bootstrapping the main work-
ing environment of Isabelle/HOL lies in the key HOL methodology to start
from very basic concepts only, and build up everything else by means of defini-
tions and derivations within the formal system itself. Coq [Barras et al., 1999]
represents a slightly different approach, where the underlying type theory has
already been equipped with powerful means of induction and recursion in the
first place [Coquand and Paulin-Mohring, 1990] [Pfenning and Paulin-Mohring,
1990] [Paulin-Mohring, 1993]. These concepts have a clear justification within
the meta-theory of the “Calculus of Inductive Constructions”, which has been
developed separately. In HOL such strong concepts would be constructed by re-
duction to primitive concepts of simply-typed set-theory, essentially at run-time
of the theory processor. PVS [Owre et al., 1996] follows yet another approach,
where substantial parts of the library (and packages) are hardwired in the im-
plementation, without any intrinsic formal justifications in the first place.

Independently of any such foundational issues of Isabelle/HOL, end-users are
offered a comfortable working environment by means of the ultimate theory of
Main. This provides of more faithful view on the “real” Isabelle/HOL logic,
than the primitive basis of HOL given in the very beginning. The context pro-
vided by Main, with advanced induction and recursion being readily available,
might even appeal to proponents of constructive type theory, since the details
of classical reasoning (see §8.4), Hilbert’s choice operator (see §8.5), and HOL
type definitions (see §8.6) are largely hidden from sight.
Further user extensions of Isabelle/HOL usually do not involve complex boot-
strapping issues anymore. Authors may build their theories according to the
natural dependencies arising from definitions and proofs. In the same vein the
supplemental library of generally useful Isabelle/HOL theories [Bauer et al.,
2001] has been developed outside of the monolithic part of main Isabelle/HOL.

7.5 Discussion

7.5.1 Theory specifications versus proofs

Speaking in terms of primitive logical concepts (e.g. chapter 2), specifications
and proofs are the two fundamental means to achieve new results in a certain

7.5. Discussion 199

context. Experience with existing theorem proving environments shows that
applied logic demands a proper methodology for interaction of these different
aspects. Several definitional concepts require separate coverage of proof obliga-
tions, such as typedef (§7.1.2) and instance (§7.2.4) in Isabelle/HOL.

Interestingly, the type theory tradition has been able to unify both concepts of
specification and proof within the same framework of typed λ-calculus (e.g. see
the exposition in [Barendregt and Geuvers, 2001]). Nevertheless, existing type
theory provers may still offer a differentiated view to the user: Coq [Barras et
al., 1999] clearly separates its specification language “Gallina” from the tactical
proof language, although both are in principle able to produce the same kind of
λ-terms. In practice, Coq occasionally requires decisions by the user if a “proof”
is better presented as a “specification” in certain situations. A typical example
are side-conditions stemming from partial algebraic operations like division, see
also the related discussion in §9.4.2, and [Geuvers et al., 2000].

In the original LCF/HOL tradition [Gordon, 2000] specifications and proofs
have been treated differently in the basic logic [Pitts, 1993], but essentially uni-
formly from the perspective of users. The view of such systems is based on an
ML top-level loop, with a collection of abstract datatype constructors for prim-
itive inference rules and definitional extensions alike. This ML interface of HOL
generally tends towards bare-bones construction of theory and theorem objects.
For example, the non-emptiness obligation required by the type definition prim-
itive (see also §8.6) needs to be stated as a separate theorem beforehand, feeding
the result into the subsequent definition stage as an ML value by hand.
Another commonly encountered HOL technique is to make advanced definitional
packages solve proof obligations fully automatically inside. Here the implemen-
tation (in ML) typically exploits the specific form of proof problems emerg-
ing from a certain class of specifications, e.g. inductive datatypes of a particu-
lar form. In Isabelle/HOL, the same approach appears in inductive (§7.2.1),
datatype (§7.2.1), primrec (and recdef) (§7.2.2), and record (§7.2.3).

Such an automated setup works reasonably well for schematic proof obligations
arising from well-defined specification schemes (e.g. datatype and primrec).
Things become slightly more difficult for more general mechanisms like TFL
[Slind, 1996] [Slind, 1997] (recdef in Isabelle/HOL). Here the proof obligations
(of termination etc.) may be arbitrarily complex, depending on the actual
recursive function specification given by the user.
As already pointed out earlier (§7.2.2), recdef refers to a number of standard
automated proof tools that may only be controlled indirectly via hints, i.e.
previously established facts with an indication of their role in the automated
process (cf. the Isar attributes recdef-simp, recdef-cong, recdef-wf given in [Wen-
zel, 2001a]). That arrangement essentially follows the original HOL tradition of
feeding previous theorems into definitional mechanisms, but mediates the use of
auxiliary facts through complex proof procedures. In practice, this amounts to
mostly obscure automated reasoning, supplanting even the existing techniques

200 CHAPTER 7. The Isabelle/HOL application environment

of interactive tactical proving in HOL.
Recent work on well-founded recursion in Coq [Balaa and Bertot, 2000] exhibits
analogous problems of incorporating separate proof obligations in non-trivial
definitional patterns. According to the unified approach of type theory, proofs of
side-conditions may in principle included directly as λ-terms in the specification
text. This naive approach turns out as slightly impractical due to the complexity
of the proof objects encountered in well-founded recursion. [Balaa and Bertot,
2000] propose a specific Coq mechanism to achieve a more abstract presentation
of a restricted class of well-founded recursive definitions.

PVS [Owre et al., 1996] follows a different approach to side-conditions arising
from specifications. It does not consider proofs as first-class members of theory
developments in the first place, but treats everything uniformly as genuine proof
obligations to be managed separately (including type-checking conditions due to
predicate subtyping of logical statements, termination of recursive definitions,
or even plain theorem statements). Here “proofs” are managed dynamically
in special files, the actual theory merely consists of definitions and statements.
A theory is marked as finished once that all obligations have been covered
interactively by the user. There is also specific support for change management
with automatic replay old proof scripts behind the scenes; individual failures of
previous proofs are marked accordingly.
PVS is positioned as a “prototype verification system”, where users may develop
formal descriptions that are explored by means of interactive proof checking
(and model-checking), in order to exhibit bugs in their designs. Consequently,
“proofs” are treated as mere necessities that pop up dynamically and need
to accommodated by specific tool to achieve maximum comfort for users. The
concept of proofs as independent static representations of formal reasoning work
conducted by users is not considered important here.

Specifications and readable proofs

From the Isar perspective, the issue of incorporating proofs into specification
mechanisms need to be reconsidered from the primary view of formal document
construction, rather than primitive logical issues or even particular system or-
ganization. In informal mathematics, definitions and proofs may be freely in-
termixed in the text without further ado. For example, operations on quotient
structures typically demand “well-definedness” proofs, establishing congruence
properties modulo a certain equivalence relation.
Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999] suc-
cessfully follows this basic observation of mathematical practice. Some Mizar
specification schemes include proof texts to cover separate obligations. The sub-
sequent example has been taken from article #676 (DYNKIN) of [Mizar library].
It illustrates an indirect definition by giving a (unique) characterization of the
intended entity (see the it expression in the means part below).

definition

7.5. Discussion 201

let Omega be non empty set;

let f be SetSequence of Omega;

let X be Subset of Omega;

func seqIntersection(X,f) -> SetSequence of Omega

means :def_seqInt:

for n holds it.n=X∩ f.n;

existence

proof

. . .
end;

uniqueness

proof

. . .
end;

end;

Here the existence and uniqueness keywords indicate specific goal statements
required by that particular definitional scheme. The proof bodies are formulated
in terms of the existing Mizar proof language.

In Isar we intend to follow essentially the same idea of incorporating the existing
proof language into theory specification mechanisms in a modular fashion. Some
care is required to accommodate the open-ended nature of Isar syntax (§3.2.1
and §3.2.4), and the incremental way of Isar proof processing (§3.2.3). Our
general technique is to split the definitional mechanism into three stages as
indicated below. The existing theorem command of Isar (§3.2.1) turns out as
sufficiently flexible to provide the link between these stages, just by virtue of the
attribute specification that may be included in the initial result specification.

1. The preamble may perform initial preparations (and syntactic checks of the
specification text), before commencing an ordinary Isar proof by posing a
new claim at the theory level.

2. The proof proceeds incrementally by existing Isar language elements given
by the user. The package does not have any immediate control about the
shape of that proof, but may have included some special support via initial
context declarations, such as term abbreviations or auxiliary facts.

For example, we may ensure that canonical proof steps do the “right
thing” to commence a manual proof in practice, by virtue of appropriate
rule declarations. Trivial situations should work out in a single automated
step as well, e.g. “by simp”.

3. The postamble acquires the result established by the user and eventually
performs the actual theory extension.

Note that we prefer to include only a single Isar proof into specification mech-
anisms (without loss of generality). Multiple obligations may be easily repre-
sented either within the object-logic (e.g. using plain ∧), or may be achieved

202 CHAPTER 7. The Isabelle/HOL application environment

simultaneously according to the same principles underlying obtain (cf. §5.3).
This policy avoids pseudo-goal statements, like existence and uniqueness ex-
hibited in the Mizar example above. Conical Isar proof patterns may involve
plain show elements (in the order preferred by the writer).

We illustrate the general Isar technique of mixed specifications and proofs by
typedef of Isabelle/HOL (cf. §7.1.2). This is actually a derived theory com-
mand, based on the theorem primitive as indicated below. Here A refers to
the representing set specified by the user; the package demands a non-emptiness
statement ` ∃ x . x ∈ A to complete the actual “definition” (see also §8.6).

theorem [perform-typedef]: ∃ x . x ∈ A (is ∃ x . x ∈ ?set)

The user may now fill in an Isar proof immediately in the text, for example by
a canonical proof step, which in turn demands a concrete existential witness
to be given in the subsequent sub-proof (by virtue of ∃ introduction).
In order to accommodate this common pattern, the typedef package has al-
ready provided a suitable term abbreviation in the initial goal statement (the
actual name is that of the type definition, cf. §7.1.2).

proof

show a ∈ ?set 〈proof 〉
qed

Having finished that proof, the result ` ∃ x . x ∈ A is fed into the special attribute
perform-typedef, which essentially performs a type definition according to the
primitive in Gordon/HOL implementations already discussed before [Gordon
and Melham, 1993] [Gordon, 2000]. Recall that a theory attribute may be an
arbitrary function theory × theorem → theory × theorem (cf. the interpretation
A in §3.2.3). Here we simply let perform-typedef augment the theory by the
type definition primitive (passing the non-emptiness fact).

The instance specification of Isabelle/Isar (§7.2.4) works along similar lines.
Here the initial claim would be the logical reflection of type arities or class
inclusion statements [Wenzel, 1997]. Since standard class introduction rules
are available as global introduction patterns, the user may again use a stan-
dard proof step to reduce this raw goal to a number of subgoals corresponding
exactly to the class axioms that need to be established for the particular instan-
tiation at hand.

It remains to be seen whether the same technique of combining advanced speci-
fication mechanisms with readable proofs scales up to more sophisticated pack-
ages like TFL [Slind, 1996] [Slind, 1997]. A successful reformulation of recdef
within Isabelle/Isar should provide both a better understanding of the different
stages of its internal proof process, as well as significantly improved user conve-
nience. Isar proof contexts provide far more infrastructure to lay out complex
proof obligations than primitive goal states used in TFL so far.

7.5. Discussion 203

7.5.2 Proof methods and relevance of facts

Consider the following recurrent Isar proof pattern of establishing an interme-
diate fact by an atomic proof step.

from ~a have C by m

A text fragment like this is able to communicate several important aspects of
formal reasoning to the reader, including usage of existing facts ~a, the result
statement C, and the proof method m. The above Isar phrase appears to be
quite intelligible due its pseudo-natural language reading. On the other hand, we
may raise the key question if the formal meaning of the corresponding sequence
of Isar/VM transitions encountered here (cf. §3.2.3) is actually consistent with
such an informal reading of the text. In principle, the real behavior of formal
proof texts could belie readers, for example if names of primitive elements and
concrete syntax would have been chosen badly to begin with.

We call a portion of Isar proof text faithful iff its general perception by readers
coincides with the actual formal meaning. Apparently, faithfulness of texts is
not easily determined exactly, it heavily depends on the general expectations
of particular readers, and may be up to a broad range of interpretations of the
“real” meaning.

Concerning the overall language design of Isar (cf. chapter 3), great care has
been taken to achieve a high degree of faithfulness of proof texts by default,
following our common style of writing. Nevertheless, with the open design of
Isar and its highly compositional nature that allows different kinds of language
elements to be combined in numerous ways, it is hard to rule out semantic
anomalies altogether. The Isar proof writer may certainly produce non-sense
by full intention, but we would not like to take away this freedom at the cost of
the inflexibility of a more restricted language.
On the other hand, anomalies should not creep into Isar proofs by accident.
Reconsidering the three aspects of the elementary pattern above, we first observe
that Isar ensures proper treatment of the first two at the least: referenced facts ~a
are guaranteed to have been established beforehand, and the explicit statement
C is always that of the real result produced eventually. Only the proof method
m involved here might be apt to unexpected effects, since arbitrary inferences
may be performed inside.

Even basic rule steps (§3.3.2) occasionally have unexpected effects; higher-order
backchaining (§2.4) is not a completely trivial operation after all. The subse-
quent example demonstrates how proof texts based on single inferences may
already belie the reader.

assume ab: A ∧ B

assume C

...

204 CHAPTER 7. The Isabelle/HOL application environment

from ab have C ..

— non-faithful proof text!

Apparently, this proof is slightly inappropriate, since it fools the reader to think
that the fact ab = ` A ∧ B contributes to the result ` C. In reality, the local
assumptions A and B emerging from the initial elimination have been ignored.
Even worse, a different assumption was used implicitly, according to the builtin
notion of finished Isar goal configurations up to proof-by-assumption (§3.2.3).
The sane proof is documented in further detail below.

from ab have C

proof

assume A and B

— ignored

have C .

— finished by assumption

qed

Fortunately, the danger of producing such faulty texts by accident is not very
high in practice, provided the writer takes minimal care in proof composition.
Note that individual applications of rules (and assumptions) are quite easy to
trace in interactive development, especially in conjunction with the Proof Gen-
eral interface [Proof General] [Aspinall, 2000].

The situation changes substantially with arbitrary automated proof methods
(cf. §7.3). Here we encounter the fundamental problem of relevance of facts in
automated reasoning. Common proof procedures (e.g. the first-order tableau
prover implemented in Isabelle’s blast [Paulson, 1999]) operate on a goal con-
figuration that may include any number of premises considered as “axioms” for
the purpose of the present proof search. The general behavior of common search
procedures critically depends on this collection of facts included in the problem.
Both by adding or removing local facts, the search space (and runtime) may
grow or shrink considerably, just as overall failure or divergence of the proce-
dure. Afterwards it is usually hard to tell which particular facts have really
made the difference.
Ideally, proof procedures would include comprehensive diagnostic information
about the relevance of facts encountered on the internal path of automated
proof search. Unfortunately, this poses a fundamental problem for existing
techniques of automated reasoning, both in theory and practice. Note that most
automated tools would not even record the internal success path in terms of basic
inference of the underlying logic, which makes it hard acquire full representations
of (primitive) proof objects. Recording relevance of any internal inference steps
would be even more difficult.

Isar does not meddle with specific issues of implementing automated proof tools
properly, but offers the following discipline in order to keep the critical de-
pendency on local facts under control of the proof writer. As a general rule,
“advanced” methods may never refer to previous facts from the proof contexts

7.5. Discussion 205

themselves (such as assumptions or local results), but only include those that
have been explicitly highlighted by the proof writer (either by forward chaining
via then, or as separate arguments in the method specification).
This simple policy turns out as quite robust in practice. While it is not possible
to make sure that all facts actually do participate in building the result, readers
will know that at most these local facts may have been relevant in that particular
automated step.

Now reconsider our basic proof patterns involving a heavily automated method.

from ~a have C by blast

Independent of the exact course of reasoning performed inside of blast, the text
is able to tell the reader that only the local facts ~a may immediately contribute
to the result of C.
Note that global declarations of additional rules (e.g. intro, elim, dest rules for
blast, cf. §7.3) are a slightly different issue. For syntactic reasons, global rules
may not refer to local entities of a particular proof context. Nonetheless, a badly
designed theory library may cause rather unexpected behaviour of automated
tools in its own right.

Another beneficial effect of restricting the use of local facts is that Isar goal
configurations are kept relatively small. This essentially enforces a limited form
of compositionality of automated tools wrt. augmenting proof contexts (cf. the
related discussion in §6.4.3): additional assumptions and facts are not included
in advanced method invocations in the first place, so they cannot disturb their
behavior in uncouth manners.
In contrast, unstructured tactical proof scripts tend to suffer severely from goal
states that are crowded by excessive facts. The basic paradigm of tactical
proving is to apply consecutive transformations of goals, until a solved form
is reached eventually (cf. §3.2.3 and §4.2.3). Here all information is accumu-
lated in one big goal state, which routinely makes automated methods choke
in realistic applications. For this reason, tactical systems usually provide spe-
cial tools to tune goal states in an ad-hoc fashion, e.g. thin_tac in traditional
Isabelle [Paulson, 2001b].
On the other hand, structured proof systems like Isabelle/Isar have become
more scalable without any special provisions required. See also the experience
reported in chapter 10, especially concerning the run-time behavior of non-
trivial Isar proof texts (see §10.7.2). The particular technique of “big-step”
reasoning via degenerate calculational proof schemes (cf. §6.4.3) essentially pro-
vides another perspective to the relevance problem of facts, which may have
been collected over several sections of Isar proof text.

206 CHAPTER 7. The Isabelle/HOL application environment

Chapter 8

Example: Higher-Order Logic

We reconsider foundational issues of the HOL logic, ranging from the pure frame-
work of minimal higher-order logic to slightly more exotic features of classical
HOL used in practice, including Hilbert’s choice operator and type definitions.

From the Isar perspective, this formal development serves as a realistic example
of studying issues of pure logic, conducted at the level of higher-order abstract
syntax and derived rules. We do not yet use Isabelle/HOL here, but discuss its
very foundations within the pure background theory of Isabelle/Isar.

8.1 Minimal Higher-Order Logic

theory Higher-Order-Logic = Pure:

8.1.1 Simply-typed lambda-terms

The language of simply-typed λ-terms is represented within the background
theory by the well-known approach of higher-order abstract syntax [Pfenning
and Elliott, 1988].
We first introduce a subclass type for the types of our language of λ-terms. The
types o of propositions and → of functions operate on this class.

classes type ⊆ logic

defaultsort type

typedecl o

arities o :: type

typedecl (′a, ′b) → (infixr 0)

arities → :: (type, type) type

207

208 CHAPTER 8. Example: Higher-Order Logic

The signatures of abstraction and application of the object-language are de-
clared as follows. We also state β- and η-conversion rules as equality axioms.

consts

Abs :: (′a ⇒ ′b) ⇒ ′a → ′b (binder λ 5)

App :: (′a → ′b) ⇒ ′a ⇒ ′b (infixl · 500)

axioms

beta-conv : (λ x . f (x)) · a ≡ f (a)

eta-conv : (λ x . f · x) ≡ f

The above representation basically provides a separate copy of the syntactic
background λ-calculus, which happens to have the same conversion laws, but
here we have been able to keep the underlying equational theory under our own
control. Consequently, the use of conversions of the object-language will be
exposed explicitly in our proofs.
Explicit reasoning with conversions over the basic syntax happens to be part of
the present meta-theoretical study on HOL. In contrast, an actual application
environment (chapter 7) would identify its syntax with the existing framework
as much as possible, in order to spare users unnecessary formal noise. Then
β- and η-conversion would take place implicitly in builtin operations, especially
those of higher-order unification and back-chaining (cf. §2.4).

8.1.2 Basic logical connectives

With the abstract syntax of simply-typed λ-terms available, actual logical prop-
erties of the language are now represented via a truth judgment that coerces the
type o of object-level statements into propositions prop of the framework. This
is the canonical way to represent object-logics within Isabelle’s meta-logic [Paul-
son, 1989] [Paulson, 1990]. Note that the concrete syntax leaves the Trueprop
coercion implicit as a special notation of category prop.

judgment

Trueprop :: o ⇒ prop (- 5)

Implication and universal quantification (over arbitrary types) are now declared
with syntax and characteristic rules as follows.

consts

imp :: o → o → o

All :: (′a → o) → o

syntax

-imp :: o ⇒ o ⇒ o (infixr −→ 25)

-All :: idt ⇒ o ⇒ o ((3∀ -./ -) [0, 10] 10)

translations

A −→ B
 imp · A · B

∀ x . A
 All · (λ x . A)

8.2. Extensional equality 209

axioms

impI [intro]: (A =⇒ B) =⇒ A −→ B

impE [dest , trans]: A −→ B =⇒ A =⇒ B

allI [intro]: (
∧

x . P(x)) =⇒ ∀ x . P(x)

allE [dest]: ∀ x . P(x) =⇒ P(a)

The representation of quantified propositions ∀ x . A as All · (λ x . A) follows
the earliest tradition of higher-order logic [Church, 1940]. The same principle
may be applied to similar “binders” as well, such as

∑
i < n. e(i). This casual

handling of variable binding via λ-abstraction is one of the key virtues of higher-
order abstract syntax [Pfenning and Elliott, 1988].

The axioms given above may be understood as introduction rules for the truth
judgment. This view is sufficient to study the resulting logical system at the level
of primitive and derived rules. On the other hand, there is no induction rule
available to reason about derivability of Trueprop statements in an exhaustive
manner. In particular, admissible rules are presently beyond our reach.
An established way to model a logical system with both introduction rules
and induction would be to define derivability as an inductive set (§7.2.1) over
the basic syntax. This would enable the full range of meta-theoretical studies
(including completeness issues etc.), leaving behind the handsome approach
of higher-order abstract syntax. There has been ongoing work on combining
higher-order abstract syntax directly with induction principles [Despeyroux et
al., 1997] [Hofmann, 1999], although the resulting systems do have their own
complexities, both in theory and practice.

8.2 Extensional equality

The axiomatic base of minimal logic is now extended by a particular kind of
equality. The following declarations introduce “=” as an extensional equivalence
relation that coincides with logical equivalence. We are careful to introduce
atomic axioms only (cf. the treatment of the pure framework in §2.2); it is easy
to derive proper rules as well, which are more useful in practice.

consts

equal :: ′a → ′a → o

syntax

-equal :: ′a ⇒ ′a ⇒ ′a (infixl = 50)

translations

x = y
 equal · x · y

axioms

refl [intro]: x = x

210 CHAPTER 8. Example: Higher-Order Logic

subst-ax : x = y −→ P · x −→ P · y

ext-ax : (∀ x . f · x = g · x) −→ f = g

iff-ax : (A −→ B) −→ (B −→ A) −→ A = B

theorem subst : x = y =⇒ P(x) =⇒ P(y)

proof −
note subst-ax

also assume x = y

also assume P(x) hence (λ x . P(x)) · x by (unfold beta-conv)

finally have (λ x . P(x)) · y . thus P(y) by (unfold beta-conv)

qed

theorem ext [intro]: (
∧

x . f · x = g · x) =⇒ f = g

proof −
note ext-ax

also assume
∧

x . f · x = g · x hence ∀ x . f · x = g · x ..

finally show f = g .

qed

theorem iff [intro]: (A =⇒ B) =⇒ (B =⇒ A) =⇒ A = B

proof −
note iff-ax

also assume A =⇒ B hence A −→ B ..

also assume B =⇒ A hence B −→ A ..

finally show A = B .

qed

We are ready to derive the basic properties of “=” as a congruence of the under-
lying term language. Symmetry and transitivity are consequences of reflexivity
and substitution. We also declare standard transitivity rules for calculational
reasoning (cf. chapter 6).

theorem sym [elim]: x = y =⇒ y = x

proof −
assume x = y

thus y = x by (rule subst) (rule refl)

qed

lemma [trans]: x = y =⇒ P(y) =⇒ P(x)

by (rule subst) (rule sym)

lemma [trans]: P(x) =⇒ x = y =⇒ P(y)

by (rule subst)

theorem trans [trans]: x = y =⇒ y = z =⇒ x = z

by (rule subst)

8.3. Further connectives 211

Next we derive the congruences for application and abstraction. The former is a
simple consequence of reflexivity and substitution. The latter involves additional
properties of the term language, namely extensionality and β-conversion.

theorem app-cong [intro]: f = g =⇒ x = y =⇒ f · x = g · y

proof −
assume f = g hence f · x = g · x by (rule subst) (rule refl)

also assume x = y hence g · x = g · y by (rule subst) (rule refl)

finally show ?thesis .

qed

lemma [intro]: x = y =⇒ f · x = f · y

by (rule app-cong) (rule refl)

theorem abs-cong [intro]: (
∧

x . f (x) = g(x)) =⇒ (λ x . f (x)) = (λ x . g(x))

proof −
assume eq :

∧
x . f (x) = g(x)

show ?thesis

proof

fix x from eq have f (x) = g(x) .

thus (λ x . f (x)) · x = (λ x . g(x)) · x by (unfold beta-conv)

qed

qed

It is very important to note that in our formulation of equality within the frame-
work substitution had been chosen as primitive, with emerging congruences as
derived rules. Otherwise, we would have required induction to establish substi-
tution as an admissible rule, which is not possible here.
Finally we complete the characterization of “=” as logical equivalence. The
following two eliminations are basic consequences of substitution in HOL.

theorem iff1 [elim]: A = B =⇒ A =⇒ B
by (rule subst)

theorem iff2 [elim]: A = B =⇒ B =⇒ A
by (rule subst) (rule sym)

8.3 Further connectives

8.3.1 Definitions

Having unrestricted quantification over propositions available in minimal higher-
order logic, we may now introduce the standard set of logical connectives in a
purely definitional manner. The representation of standard connectives based
only on −→ and ∀ closely follows established traditions of higher-order logic and
type theory. As a general rule of thumb, the definition of a derived connective
such as ∃ follows its canonical elimination rule.

212 CHAPTER 8. Example: Higher-Order Logic

consts
false :: o (⊥)
true :: o (>)
not :: o → o
conj :: o → o → o
disj :: o → o → o
Ex :: (′a → o) → o

syntax
-not :: o ⇒ o (¬ - [40] 40)
-not-equal :: ′a ⇒ ′a ⇒ ′a (infixl 6= 50)
-conj :: o ⇒ o ⇒ o (infixr ∧ 35)
-disj :: o ⇒ o ⇒ o (infixr ∨ 30)
-Ex :: idt ⇒ o ⇒ o ((3∃ -./ -) [0, 10] 10)

translations
¬ A
 not · A
x 6= y
 ¬ (x = y)
A ∧ B
 conj · A · B
A ∨ B
 disj · A · B
∃ x . P
 Ex · (λ x . P)

defs
false-def : ⊥ ≡ ∀A. A
true-def : > ≡ ⊥ −→ ⊥
not-def : not ≡ λA. A −→ ⊥
conj-def : conj ≡ λA B . ∀C . (A −→ B −→ C) −→ C
disj-def : disj ≡ λA B . ∀C . (A −→ C) −→ (B −→ C) −→ C
Ex-def : Ex ≡ λP . ∀C . (∀ x . P · x −→ C) −→ C

8.3.2 Derived rules

Based on the above definitions, the usual characteristic rules for standard logical
connectives may now be derived as follows.

theorem falseE [elim]: ⊥ =⇒ A
proof (unfold false-def)

assume ∀A. A
thus A ..

qed

theorem trueI [intro]: >
proof (unfold true-def)

show ⊥ −→ ⊥ ..
qed

theorem notI [intro]: (A =⇒ ⊥) =⇒ ¬ A
proof (unfold not-def)

assume A =⇒ ⊥
hence A −→ ⊥ ..
thus (λA. A −→ ⊥) · A by (unfold beta-conv)

8.3. Further connectives 213

qed

theorem notE [elim]: ¬ A =⇒ A =⇒ B
proof (unfold not-def)

assume (λA. A −→ ⊥) · A
hence A −→ ⊥ by (unfold beta-conv)
also assume A
finally have ⊥ ..
thus B ..

qed

lemma notE ′: A =⇒ ¬ A =⇒ B
by (rule notE)

lemmas contradiction = notE notE ′ — proof by contradiction in any order

theorem conjI [intro]: A =⇒ B =⇒ A ∧ B
proof (unfold conj-def)

assume a: A and b: B
have ∀C . (A −→ B −→ C) −→ C
proof

fix C show (A −→ B −→ C) −→ C
proof

assume A −→ B −→ C
also note a
also note b
finally show C .

qed
qed
thus (λA B . ∀C . (A −→ B −→ C) −→ C) · A · B

by (unfold beta-conv)
qed

theorem conjE [elim]: A ∧ B =⇒ (A =⇒ B =⇒ C) =⇒ C
proof (unfold conj-def)

assume (λA B . ∀C . (A −→ B −→ C) −→ C) · A · B
hence c: ∀C . (A −→ B −→ C) −→ C by (unfold beta-conv)
assume A =⇒ B =⇒ C
thus C
proof this

show A
proof −

from c have (A −→ B −→ A) −→ A ..
also have A −→ B −→ A
proof

assume A
thus B −→ A ..

qed
finally show ?thesis .

qed

214 CHAPTER 8. Example: Higher-Order Logic

show B
proof −

from c have (A −→ B −→ B) −→ B ..
also have A −→ B −→ B
proof

show B −→ B ..
qed
finally show ?thesis .

qed
qed

qed

theorem disjI1 [intro]: A =⇒ A ∨ B
proof (unfold disj-def)

assume a: A
have ∀C . (A −→ C) −→ (B −→ C) −→ C
proof

fix C show (A −→ C) −→ (B −→ C) −→ C
proof

assume A −→ C
also note a
finally have C .
thus (B −→ C) −→ C ..

qed
qed
thus (λA B . ∀C . (A −→ C) −→ (B −→ C) −→ C) · A · B

by (unfold beta-conv)
qed

theorem disjI2 [intro]: B =⇒ A ∨ B
proof (unfold disj-def)

assume b: B
have ∀C . (A −→ C) −→ (B −→ C) −→ C
proof

fix C show (A −→ C) −→ (B −→ C) −→ C
proof

show (B −→ C) −→ C
proof

assume B −→ C
also note b
finally show C .

qed
qed

qed
thus (λA B . ∀C . (A −→ C) −→ (B −→ C) −→ C) · A · B

by (unfold beta-conv)
qed

theorem disjE [elim]: A ∨ B =⇒ (A =⇒ C) =⇒ (B =⇒ C) =⇒ C
proof (unfold disj-def)

8.3. Further connectives 215

assume (λA B . ∀C . (A −→ C) −→ (B −→ C) −→ C) · A · B
hence c: ∀C . (A −→ C) −→ (B −→ C) −→ C by (unfold beta-conv)
assume r1: A =⇒ C and r2: B =⇒ C
show C
proof −

from c have (A −→ C) −→ (B −→ C) −→ C ..
also have A −→ C
proof

assume A thus C by (rule r1)
qed
also have B −→ C
proof

assume B thus C by (rule r2)
qed
finally show ?thesis .

qed
qed

theorem exI [intro]: P(a) =⇒ ∃ x . P(x)
proof (unfold Ex-def)

assume a: P(a)
have ∀C . (∀ x . (λ x . P(x)) · x −→ C) −→ C
proof

fix C show (∀ x . (λ x . P(x)) · x −→ C) −→ C
proof

assume ∀ x . (λ x . P(x)) · x −→ C
hence (λ x . P(x)) · a −→ C ..
hence P(a) −→ C by (unfold beta-conv)
also note a
finally show C .

qed
qed
thus (λP . ∀C . (∀ x . P · x −→ C) −→ C) · (λ x . P(x))

by (unfold beta-conv)
qed

theorem exE [elim]: ∃ x . P(x) =⇒ (
∧

x . P(x) =⇒ C) =⇒ C
proof (unfold Ex-def)

assume (λP . ∀C . (∀ x . P · x −→ C) −→ C) · (λ x . P(x))
hence c: ∀C . (∀ x . (λ x . P(x)) · x −→ C) −→ C by (unfold beta-conv)
assume r :

∧
x . P(x) =⇒ C

show C
proof −

from c have (∀ x . (λ x . P(x)) · x −→ C) −→ C ..
also have ∀ x . (λ x . P(x)) · x −→ C
proof

fix x show (λ x . P(x)) · x −→ C
proof

assume (λ x . P(x)) · x
hence P(x) by (unfold beta-conv)

216 CHAPTER 8. Example: Higher-Order Logic

thus C by (rule r)
qed

qed
finally show ?thesis .

qed
qed

8.4 Classical logic

There are many ways to characterize classical logic. The following axiom (and
the corresponding derived rule) express classical reasoning in a very explicit
way: in order to show a proposition one may just assume its negation!

axioms

classical-ax : (¬ A −→ A) −→ A

theorem classical : (¬ A =⇒ A) =⇒ A

proof −
note classical-ax

also assume ¬ A =⇒ A hence ¬ A −→ A ..

finally show A .

qed

Peirce’s Law is a similar well-known characterization of classical logic, which
uses only implication in its statement. Observing that ¬ A acts like A −→ ⊥
(we have even defined it that way), Peirce’s Law can be understood as a formal
generalization of the classical-ax statement, with ¬ A represented by A −→ B
for an arbitrary proposition B.

theorem Peirce ′s-Law : ((A −→ B) −→ A) −→ A

proof

assume a: (A −→ B) −→ A

show A

proof (rule classical)

assume ¬ A

have A −→ B

proof

assume A

thus B by (rule contradiction)

qed

with a show A ..

qed

qed

Some alternative classical rules may be derived as follows: double-negation,
tertium-non-datur, and classical-cases (which is particularly useful in practice).

8.4. Classical logic 217

theorem double-negation: ¬ ¬ A =⇒ A

proof −
assume ¬ ¬ A

show A

proof (rule classical)

assume ¬ A

thus ?thesis by (rule contradiction)

qed

qed

theorem tertium-non-datur : A ∨ ¬ A

proof (rule double-negation)

show ¬ ¬ (A ∨ ¬ A)

proof

assume ¬ (A ∨ ¬ A)

have ¬ A

proof

assume A hence A ∨ ¬ A ..

thus ⊥ by (rule contradiction)

qed

hence A ∨ ¬ A ..

thus ⊥ by (rule contradiction)

qed

qed

theorem classical-cases: (A =⇒ C) =⇒ (¬ A =⇒ C) =⇒ C

proof −
assume r1: A =⇒ C and r2: ¬ A =⇒ C

from tertium-non-datur show C

proof

assume A

thus ?thesis by (rule r1)

next

assume ¬ A

thus ?thesis by (rule r2)

qed

qed

Apparently, the above rules entail each other in the given order. One may even
close the circle back to the classical rule (without using that rule in the proof, of
course). Thus we illustrate the well-known fact that any of these rules may serve
as a complete characterization of classical reasoning itself; cf. the comprehensive
exposition in [Thompson, 1991].

lemma (¬ A =⇒ A) =⇒ A
proof −

assume r : ¬ A =⇒ A

218 CHAPTER 8. Example: Higher-Order Logic

show A
proof (rule classical-cases)

assume A thus A .
next

assume ¬ A thus A by (rule r)
qed

qed

8.5 Hilbert’s choice operator

Hilbert’s choice operator ε (which is called Some below) takes an arbitrary
predicate and delivers an unspecified element belonging to its extension; the
result is completely unknown for the empty predicate. Using the usual binder
syntax, we write SOME x . P(x) for selection from the predicate λ x . P(x).

consts

Some :: (′a → o) → ′a

syntax

-Some :: idt ⇒ o ⇒ o ((3SOME -./ -) [0, 10] 10)

translations

SOME x . P
 Some · (λ x . P)

axioms

some-ax : P · a −→ P · (SOME x . P · x)

theorem someI : P(a) =⇒ P(SOME x . P(x))

proof −
note some-ax

also assume P(a) hence (λ x . P(x)) · a by (unfold beta-conv)

finally have (λ x . P(x)) · (SOME x . (λ x . P(x)) · x) .

thus ?thesis by (unfold beta-conv)

qed

Hilbert’s choice operator is occasionally presented as a slightly mysterious mech-
anism, which appears to allow elements to be picked even from the empty set!
On the other hand, it may be seen as just another total higher-order function
that happens to be somewhat underspecified within the formal framework of
HOL. This view fits indeed very well into the general “totality” approach of
HOL, where any well-formed expression is treated as properly defined without
demanding a unique interpretation.
Nevertheless, most of mainstream mathematics is usually content with unique
descriptions, by selecting elements from singleton sets. In fact, this is the most
common use of Hilbert’s choice in HOL as well. The formulation given in [An-
drews, 1986] even includes an operator for unique descriptions only. The follow-
ing derived rule covers that special case in a practically useful manner, it shows

8.6. Concrete types and type definitions 219

how to “evaluate” a choice expression by exhibiting a unique witness.

theorem some-equality :

P(a) =⇒ (
∧

x . P(x) =⇒ x = a) =⇒ (SOME x . P(x)) = a

proof −
assume r :

∧
x . P(x) =⇒ x = a

assume P(a) hence P(SOME x . P(x)) by (rule someI)

thus (SOME x . P(x)) = a by (rule r)

qed

Occasionally, the general form of Hilbert’s choice may be found useful nonethe-
less. The example of rational numbers in chapter 9 includes a simple theory of
quotient types, where the general choice principle is used to pick “default” ele-
ments from equivalence classes (which are only unique in terms of the underlying
equivalence relation), see §9.2.3.

8.6 Concrete types and type definitions

So far, our presentation of the basic HOL logic has only provided the basic
type o of propositions (which degenerates into the boolean values for classical
systems), and functions ′a → ′b over arbitrarily complex types ′a and ′b.
In order to achieve a sufficiently rich environment to represent mathematical
concepts, it is customary to axiomatize another type i as an infinite collection
of “individuals”. Subsequently we use the common characterization of infinity
as “there is an injection that is not a surjection”.

typedecl i

arities i :: type

axioms

i-infinite: ∃ f :: i → i . (∀ x . ∀ y . f · x = f · y −→ x = y) ∧ (∃ z . ∀ x . f · x 6= z)

In principle, the types of i, o, and ′a → ′b are already sufficient to represent
common mathematical notions within HOL, according to its inherent expressive
power; e.g. see the exposition of [Andrews, 1986] for the original formulation of
[Church, 1940]. For example, f and z acquired by the i-infinite property above
turn out as suitable representatives of successor and zero, respectively; thus the
natural numbers may be considered as a subset of type i.
On the other hand, the potential of HOL types is somewhat diminished by this
elementary approach; types would merely be used to achieve a syntactic “rank-
ing” of objects, in order to guarantee consistency of the system (this happens
to be Church’s original intention, after an untyped system has failed due to
Russel’s paradox). Thus HOL would essentially just be treated like a restricted
version of untyped set-theory.

Church’s original formulation of the “Simple Theory of Types” [Church, 1940]

220 CHAPTER 8. Example: Higher-Order Logic

was later rediscovered by Gordon as a useful basis for computer-science applica-
tions, with interactive development of machine-checked formal proof [Gordon,
1985a] [Gordon, 1985b] [Gordon and Melham, 1993] [Gordon, 2000].
At that point HOL has acquired an improved treatment of types, supporting
arbitrary type constructors and schematic polymorphism. Furthermore, the
mechanism of HOL type definitions was devised, in order to be able to introduce
new types in a disciplined manner; the HOL tradition generally rejects arbitrary
axiomatizations by end-users.

8.6.1 Basic characterization of type definitions

HOL type definitions state axioms to identify a non-empty subset of an existing
type with a new type. This is expressed in a set-theoretic manner via two bijec-
tions rep and abs as specified below. The subsequent property of type-definition
will be stated as an axiom for any new type ′a, which has been represented as
a non-empty subset of an existing type ′b. Here we identify sets over ′b with
predicates ′b → o; Isabelle/HOL uses a separate type of sets (chapter 7).

rep

abs

A’a

’b

Figure 8.1: HOL type definition

constdefs

type-definition :: (′a → ′b) → (′b → ′a) → (′b → o) → o

type-definition ≡ λ rep abs A.

(∀ x . A · (rep · x)) ∧
(∀ x . abs · (rep · x) = x) ∧
(∀ y . A · y −→ rep · (abs · y) = y)

This compact axiomatization may be decomposed into separate theorems of rep,
rep-inverse, and abs-inverse as follows.

lemma type-definitionE [elim]:

type-definition · rep · abs · A =⇒
(A · (rep · x) =⇒

abs · (rep · x) = x =⇒

8.6. Concrete types and type definitions 221

A · y −→ rep · (abs · y) = y =⇒ C) =⇒ C

(is - =⇒ (?rep(x) =⇒ ?rep-inverse(x) =⇒ ?abs-inverse(y) =⇒ -) =⇒ -)

proof (unfold type-definition-def beta-conv)

assume a: (∀ x . ?rep(x)) ∧ (∀ x . ?rep-inverse(x)) ∧ (∀ y . ?abs-inverse(y))

assume r : ?rep(x) =⇒ ?rep-inverse(x) =⇒ ?abs-inverse(y) =⇒ C

from a have b: (∀ x . ?rep-inverse(x)) ∧ (∀ y . ?abs-inverse(y)) ..

from a have ∀ x . ?rep(x) .. hence ?rep(x) ..

moreover from b have ∀ x . ?rep-inverse(x) .. hence ?rep-inverse(x) ..

moreover from b have ∀ y . ?abs-inverse(y) .. hence ?abs-inverse(y) ..

ultimately show C by (rule r)

qed

theorem rep: type-definition · rep · abs · A =⇒ A · (rep · x)

by (rule type-definitionE)

theorem rep-inverse: type-definition · rep · abs · A =⇒ abs · (rep · x) = x

by (rule type-definitionE)

theorem abs-inverse: type-definition · rep · abs · A =⇒
A · y =⇒ rep · (abs · y) = y

proof −
assume type-definition · rep · abs · A

hence A · y −→ rep · (abs · y) = y ..

also assume A · y

finally show ?thesis .

qed

It is important to note that HOL types need to be treated as inherently non-
empty, due to the most basic inference rules. In particular, (∀ x . P(x)) −→ (∃ x .
P(x)) is a theorem for any type of x. The proof given below works, because fixing
an arbitrary element of some syntactic HOL type does not pose any additional
constraint on a result that does not mention that element afterwards.

theorem (∀ x :: ′a::type. P(x)) −→ (∃ x . P(x))

proof

fix any

assume ∀ x . P(x)

hence P(any) ..

thus ∃ x . P(x) ..

qed

The fundamental non-emptiness of HOL types may be also observed in the
behavior of basic theory extensions (cf. §2.3). In particular, constants of arbi-
trary type may be declared at any time, without affecting fundamental meta-
theoretical properties of the theory in a relevant manner (the way that HOL is
used in practice does not admit any strong properties here in the first place).

222 CHAPTER 8. Example: Higher-Order Logic

Hilbert’s choice operator (cf. §8.5) provides yet another way to achieve witness
terms for arbitrary type schemes, although this slightly more exotic construction
is not really required to observe these effects, which are already present in the
most pure formulation of higher-order logic (cf. §2.2).

We see that HOL type definitions necessarily require non-emptiness of the repre-
senting set to be established beforehand. This condition is already sufficient to
preserve certain semantical properties of the resulting axiom scheme to be con-
sidered as “definitional” [Pitts, 1993]; the class of standard models of classical
HOL ensures type universes to be closed by forming non-empty subsets.
On the other hand, HOL type definitions do not share further meta-theoretical
properties of plain constant definitions (cf. §2.3). As demonstrated in [Wenzel,
1997], type definitions are not syntactically conservative; thus consistency need
not be preserved either, since the notion of “standard models” underlying the
argument in [Pitts, 1993] is incomplete wrt. the deductive system of HOL.
It is very important to note that this incomplete view on HOL is merely an
effect of the particular set-theoretic interpretation required by [Pitts, 1993] in
order to make the typedef primitive appear as a definitional concept. The
very higher-order nature of HOL does not make it apt to incompleteness. In
fact, [Henkin, 1950] shows completeness of the original formulation of [Church,
1940]. The proof may use essentially the same techniques as for propositional
or first-order logic, cf. the detailed exposition in [Andrews, 1986].

8.6.2 Derived rules of type definitions

The primitive axioms of HOL type definitions are quite cumbersome to use in
practice. The following theorems express a higher-level view: injections amount
to simplification rules for equality, and surjections yield (degenerate) rules for
cases and induction (both for the new type and the original set).

theorem rep-inject : type-definition · rep · abs · A =⇒
(rep · x = rep · y) = (x = y)

proof −
assume a: type-definition · rep · abs · A

show ?thesis

proof

assume rep · x = rep · y

hence abs · (rep · x) = abs · (rep · y) ..

also from a have abs · (rep · x) = x by (rule rep-inverse)

also from a have abs · (rep · y) = y by (rule rep-inverse)

finally show x = y .

next

assume x = y

thus rep · x = rep · y ..

qed

qed

8.6. Concrete types and type definitions 223

theorem abs-inject : type-definition · rep · abs · A =⇒
A · x =⇒ A · y =⇒ (abs · x = abs · y) = (x = y)

proof −
assume a: type-definition · rep · abs · A

assume x : A · x and y : A · y

show ?thesis

proof

assume abs · x = abs · y

hence rep · (abs · x) = rep · (abs · y) ..

also from a and x have rep · (abs · x) = x by (rule abs-inverse)

also from a and y have rep · (abs · y) = y by (rule abs-inverse)

finally show x = y .

next

assume x = y

thus abs · x = abs · y ..

qed

qed

theorem rep-cases: type-definition · rep · abs · A =⇒
A · y =⇒ (

∧
x . y = rep · x =⇒ C) =⇒ C

proof −
assume a: type-definition · rep · abs · A and y : A · y

assume (
∧

x . y = rep · x =⇒ C)

thus C

proof this

from a and y have rep · (abs · y) = y by (rule abs-inverse)

thus y = rep · (abs · y) ..

qed

qed

theorem abs-cases: type-definition · rep · abs · A =⇒
(
∧

y . x = abs · y =⇒ A · y =⇒ C) =⇒ C

proof −
assume a: type-definition · rep · abs · A

assume
∧

y . x = abs · y =⇒ A · y =⇒ C

thus C

proof this

from a have abs · (rep · x) = x by (rule rep-inverse)

thus x = abs · (rep · x) ..

from a show A · (rep · x) by (rule rep)

qed

qed

theorem rep-induct : type-definition · rep · abs · A =⇒
A · y =⇒ (

∧
x . P(rep · x)) =⇒ P(y)

224 CHAPTER 8. Example: Higher-Order Logic

proof −
assume a: type-definition · rep · abs · A

assume
∧

x . P(rep · x) hence P(rep · (abs · y)) .

also assume A · y with a have rep · (abs · y) = y by (rule abs-inverse)

finally show P(y) .

qed

theorem abs-induct : type-definition · rep · abs · A =⇒
(
∧

y . A · y =⇒ P(abs · y)) =⇒ P(x)

proof −
assume r :

∧
y . A · y =⇒ P(abs · y)

assume a: type-definition · rep · abs · A

hence A · (rep · x) by (rule rep)

hence P(abs · (rep · x)) by (rule r)

also from a have abs · (rep · x) = x by (rule rep-inverse)

finally show P(x) .

qed

In the real Isabelle/HOL environment (chapter 7), the above cases and induct
rules may get used implicitly by the cases and induct proof methods (cf. the
general proof patterns given in §7.1.2). Technically, we treat HOL type defini-
tions like a hybrid of inductive set and datatype (cf. §7.2.1), although there is
no recursion involved here.
The resulting high-level setup of Isabelle/Isar reduces the formal noise involved
in detailed type abstraction and representation issues to a reasonable level. Thus
HOL type definitions turn out as an actually useful mechanisms for end-user
applications. So far the raw typedef was generally considered too cumbersome.
See chapter 9 for a concrete application that uses Isabelle/HOL’s typedef prim-
itive effectively in Isabelle/Isar.

end

8.7 Discussion: Isar techniques

Technically speaking, the present formulation of higher-order logic within the
basic framework of Isabelle/Pure has been quite similar to the initial example
of first-order logic given in chapter 4. Consequently, we have employed similar
techniques of reasoning with plain natural deduction in single steps, without
any automated proof tools available yet. As our derivations in HOL have been
slightly more “realistic” than the ones of FOL before, we have referred to a
few additional techniques in order to keep the tedium of manual reasoning at a
reasonable level.

Note that this lack of advanced proof tools exhibits an inherent issue of “boot-
strapping” new object-logics formulated within the pure framework. Automated

8.7. Discussion: Isar techniques 225

proof tools (e.g. Isabelle’s tableau prover blast [Paulson, 1999]) typically require
a number of auxiliary theorems for their internal setup; obviously, these need
to be derived by simpler means beforehand.
As far as the Isabelle tradition of building up object-logics is concerned, such
early bootstrapping stages tend to consist of a slightly unstructured collection
of proof scripts, with heavy use of ad-hoc “automation” simulated by tactic
combinators (especially for repeating and alternative choices of scripts).
The present Isabelle/Isar application demonstrates that decent proofs may be
performed from the very start of a new object-logic. We argue that even such
“primitive” theories deserve proper treatment of formal proofs, in order to en-
able interested readers to understand the details of building formal-reasoning
environments from scratch. We think that there is no need to hold up the
general perception of the primitive concepts of mechanized reasoning systems
as slightly arcane matter, where it would be equally possible to employ lucid
declarative techniques.

Subsequently, we point out a few notable techniques to accommodate the lack
of automated proof tools, as encountered in the present HOL formulation.

Calculating with implication

Implication “−→” is frequently encountered in the formal text, stemming from
atomic axioms and definitions of object-level connectives. Since we wish to
derive proper rules formulated by the meta-level connective “=⇒”, we need to
treat implication accordingly, typically by means of the modus ponens rule `
A −→ B =⇒ A =⇒ B. As it happens, this rule directly fits into the paradigm
of calculational reasoning (cf. chapter 6). Given an implication A −→ B as
current calculational result, we may continue the chain by adding also A, in
order to conclude B in the next step; with iterated (curried) implications, the
latter would be an implication, too, so we may continue the chain as expected.

For example, this technique is exhibited in theorem iff. Recall that the statement
of iff-ax has been (A −→ B) −→ (B −→ A) −→ A = B.

theorem iff [intro]: (A =⇒ B) =⇒ (B =⇒ A) =⇒ A = B

proof −
note iff-ax

also assume A =⇒ B hence A −→ B ..

also assume B =⇒ A hence B −→ A ..

finally show A = B .

qed

The overall effect of calculating with implication is similar to (restricted) state-
oriented scripting techniques, as encountered in the Intros command of Coq
[Barras et al., 1999], for example. The assume element of Mizar [Rudnicki, 1992]
[Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999] is essentially the same as

226 CHAPTER 8. Example: Higher-Order Logic

well (cf. §4.2.4 and §5.5.1). So certain forms of Isar calculations may be used
as a disciplined replacement for operational goal transformations; the implicit
compositions performed with calculational sequences internally are restricted to
the set of transitivity rules declared beforehand (cf. chapter 6).

Unlike “−→” elimination as encountered in the present example, the analogous
“∀ ” elimination rule is not quite suitable for calculational reasoning, because it
has only one premise. In simply-typed HOL, the syntactic typing of an element is
not treated like a logical judgment (cf. §2.2). Nevertheless, one could consider to
calculate with set-bounded quantifiers as available in Isabelle/HOL (chapter 7),
by using the rule ` ∀ x ∈ A. P(x) =⇒ a ∈ A =⇒ P(a) (cf. §6.3.1).

Compact presentation of multiple conclusions

The complete lack of automated reasoning tools can be felt more severely in
§8.6.1 where we have derived 3 projections of the type-definition statement.
The individual proofs would basically proceed in the same manner, by elimi-
nating quantifiers and projecting conjunctions. This rather repetitious kind of
inferences is singled out into the separate lemma type-definitionE. Here multiple
simultaneous results are expressed in the canonical fashion, just like conjunction
would be represented within minimal logic: recall that

∧
C . (X =⇒ Y =⇒ Z

=⇒ C) =⇒ C acts just like the conjunction of X, Y, Z.

lemma type-definitionE [elim]:

type-definition · rep · abs · A =⇒
(A · (rep · x) =⇒

abs · (rep · x) = x =⇒
A · y −→ rep · (abs · y) = y =⇒ C) =⇒ C

(is - =⇒ (?rep(x) =⇒ ?rep-inverse(x) =⇒ ?abs-inverse(y) =⇒ -) =⇒ -)

The proof body is kept reasonably abstract by using term abbreviations. We
refrain from “cheating” via ad-hoc proof scripts, but take the issue of structured
proof texts seriously, despite this rather boring instance.

proof (unfold type-definition-def beta-conv)

assume a: (∀ x . ?rep(x)) ∧ (∀ x . ?rep-inverse(x)) ∧ (∀ y . ?abs-inverse(y))

assume r : ?rep(x) =⇒ ?rep-inverse(x) =⇒ ?abs-inverse(y) =⇒ C

from a have b: (∀ x . ?rep-inverse(x)) ∧ (∀ y . ?abs-inverse(y)) ..

from a have ∀ x . ?rep(x) .. hence ?rep(x) ..

moreover from b have ∀ x . ?rep-inverse(x) .. hence ?rep-inverse(x) ..

moreover from b have ∀ y . ?abs-inverse(y) .. hence ?abs-inverse(y) ..

ultimately show C by (rule r)

qed

Extracting rules from basic definitions (both introductions and eliminations) is a
recurrent pattern in applications of the natural deduction framework of Isabelle
[Paulson and Nipkow, 1994]. As such transition are mostly formal bookkeeping

8.7. Discussion: Isar techniques 227

tasks only, the proofs are best represented as an atomic step, using suitable
proof tools.
In real Isabelle/HOL (chapter 7) one would typically refer to the idiom of
“by (unfold type-definition-def) blast”, although the full power of classical
tableau proving is actually overkill here. Nevertheless, that tool happens to
be available in Isabelle [Paulson, 1999], and is very quick on a broad range of
logical proof problems. In a non-classical setting, one would probably take care
to offer a much simpler tool to achieve this kind of basic formal rearrangement
of connectives.

228 CHAPTER 8. Example: Higher-Order Logic

Chapter 9

Example: Rational numbers

We present a theory of rational numbers based on the canonical representation
of equivalence classes over pairs of integers. The standard algebraic laws of
fields are proven as well.

This development covers both the domain of abstract algebraic structures, as
well as mathematical modeling involving concrete representations. The basic
ideas of the present formalization are close to traditional textbook expositions,
although we employ a few advanced techniques specific to Isabelle/HOL such
as axiomatic type classes and type abstractions. We observe that Isabelle/Isar
is able to handle mathematical applications adequately, much larger ones have
already been performed elsewhere.

9.1 Motivation

Classical mathematics appears to be the canonical domain for non-trivial appli-
cations of structured proof languages, mostly due to the Mizar system [Rudnicki,
1992] [Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999] that has been success-
fully applied in collecting a large body of formalized mathematics [Mizar library].
Mathematicians know the value of “real proofs”, which are readable representa-
tions of logical arguments essentially by definition. So it is not surprising that
a theorem proving environment built by mathematicians strongly emphasizes
structured proof texts. In contrast, systems built by computer-scientists tend
to impose completely different views on existing problem spaces.

As far as Isabelle/Isar is concerned, we have already demonstrated that appli-
cations of pure logic may be presented adequately (cf. chapter 4 and chapter 8).
The general techniques of chapter 5 and chapter 6 carry over to classical math-
ematics just as well.
The irrationality of

√
2 is a popular example to explain the concept of (informal)

229

230 CHAPTER 9. Example: Rational numbers

mathematical proof in the first place. The subsequent Isar text presents a fully
formal version at a reasonable level of abstraction (using the standard theories
about integer division and real numbers from Isabelle/HOL, cf. chapter 7). Here
we establish a generalized statement for any prime number (including 2).

theorem x2 = real p =⇒ p ∈ prime =⇒ x /∈ Q

proof

assume x-sqrt : x2 = real p

assume p-prime: p ∈ prime

hence p: 1 < p by (simp add : prime-def)

assume x ∈ Q

then obtain m n where

n: n 6= 0 and x-rat : |x | = real m / real n and gcd : gcd (m, n) = 1 ..

have eq : m2 = p ∗ n2

proof −
from n x-rat have real m = |x | ∗ real n by simp

hence real (m2) = x2 ∗ real (n2) by (simp split : abs-split)

also from x-sqrt have . . . = real (p ∗ n2) by simp

finally show ?thesis ..

qed

have p dvd m ∧ p dvd n

proof

from eq have p dvd m2 ..

with p-prime show p dvd m by (rule prime-dvd-square)

then obtain k where m = p ∗ k ..

with eq have p2 ∗ k2 = p ∗ n2 by (simp add : mult-ac)

with p have n2 = p ∗ k2 by simp

hence p dvd n2 ..

with p-prime show p dvd n by (rule prime-dvd-square)

qed

hence p dvd gcd (m, n) ..

with gcd have p dvd 1 by simp

hence p ≤ 1 by (simp add : dvd-imp-le)

with p show False by simp

qed

Just as in the applications of basic logic covered so far (cf. chapter 4 and chap-
ter 8), the Isar text focuses on explicit statements plus inherent structure indi-
cating the composition of individual items; explicit references to local and global
facts are kept at a minimum, detailed proof method specifications are avoided.
Compared to a similar proof given in article #593 of [Mizar library], the Isar
version requires less explicit references to individual facts (both local ones and
from the library), and less purely technical steps to make the proof work out
properly in terms of the builtin automated checker.

Any “realistic” application of human-readable proof construction is confronted
with the general issue of slightly unexpected behavior of the automated proof

9.1. Motivation 231

tools involved. From the perspective of composing high-level proof texts, au-
tomated tools tend to be rather “uneven” in the sense that some very simple
reasoning steps just fail, while other more complex ones happen to work out
immediately. Apparently, this is a general problem of the kind of automated
reasoning tools available today; a similar experience has been observed in long-
term experience with Mizar [Rudnicki, 1992] [Trybulec, 1993].
End-users are usually not interested in the details of automated reasoning proce-
dures, so such technical happenstance is slightly unsatisfactory. Mizar’s builtin
notion of “obvious inferences” [Rudnicki, 1987] is relatively simple, compared
to the standards of existing automated reasoning technology; the Simplifier of
Isabelle/HOL (which is the only advanced proof tool used in the example above)
is conceptually even simpler. Nevertheless, the exact behavior is already hard
to predict in practice, and the situation is usually much worse for heavily auto-
mated reasoning procedures, like blast and force in Isabelle/HOL (cf. §7.3).

So writing non-trivial proof texts involves some amount of experimentation,
which Isabelle/Isar readily supports by interactive interpretation, probably in-
cluding some “improper” proof commands (cf. chapter 3).
On the other hand, an important virtue of high-level proof checking is that
ad-hoc use of automated reasoning may be replaced by well-defined concepts
of structured proof composition in many situations. This principle can already
be observed in Mizar (cf. §4.2.4), which separates processing of individual proof
outline elements (assume, thus, etc.) from solving of problems in terminal
position (via by), although both mechanisms are based on a particular view on
classical first-order logic with a few non-intuitive effects.
In contrast, the basic machinery of Isar proof processing is essentially restricted
to back-chaining of rules from minimal higher-order logic, involving higher-order
unification as the only advanced concept (cf. chapter 2 and chapter 3). Any addi-
tional reasoning procedures are clearly marked by explicit method specifications
in the text. The need for ad-hoc proof automation may be reduced even more
by means of the derived Isar language elements of advanced natural deduction
and calculational reasoning (cf. chapter 5 and chapter 6). Certainly, the latter
concepts are completely redundant from the technical view of formal reasoning,
but are indispensable to lay out realistic Isar proof texts adequately.

As a result, new users of Isabelle/Isar need to spend less time in learning to
cope with automated tools, but may get started more quickly with a few com-
mon proof patterns based on distinctive elements. For example, meaningful
applications of classical mathematics may already be performed by simple al-
gebraic calculations, involving step-wise transformations of (in-)equalities via
basic calculational also/finally (cf. chapter 6).
Interestingly, this very simple mode of reasoning in Isar turns out to be par-
ticularly difficult to emulate in established tactical theorem proving systems
(cf. the experience reported in [Bauer and Wenzel, 2001]). This discrepancy
might be related to the general bias of existing tactical proof tools (Coq, HOL,

232 CHAPTER 9. Example: Rational numbers

Isabelle/HOL, etc.) towards heavy use of “logical reasoning” (including induc-
tive techniques), rather than simple algebraic manipulations. Consequently, the
traditional applications of these systems are more oriented towards computer-
science than classical mathematics.

In contrast, the first non-trivial application of Isabelle/Isar has been from math-
ematics, namely the well-known Hahn-Banach theorem from functional analysis
[Bauer, 1999] [Bauer, 2001a] [Bauer and Wenzel, 2000], based on the textbook
exposition of [Heuser, 1986]. The complete formal development of [Bauer, 2001a]
takes 63 printed pages; it includes basic facts about real vector spaces, subspaces,
norms, ordering of functionals, and variations of the main theorem.
The original development of [Bauer, 1999] uses an early version of Isabelle/Isar,
with several conveniences of the present environment still missing, such as ad-
vanced derived elements like generalized elimination (cf. §5.3). Nevertheless, the
whole formal theory development has been completed as a C.S. Master’s project
within several weeks, including the time to get acquainted with the concepts of
Isar and its implementation (which was not quite finished at that time).

The Hahn-Banach application certainly marks an important milestone in eval-
uating the concepts of Isar in practice. Although from the present day perspec-
tive, it turns out as a relatively simple exercise. Even more advanced mathe-
matical applications have come within the range of Isabelle/Isar, now that its
concepts and implementation have matured, and a large stock of standard proof
techniques have been explored (cf. chapter 5 and chapter 6).
The present mathematical example is a relatively small and simple one. Subse-
quently we give a construction of rational numbers that demonstrates some tech-
niques of both abstract algebraic structures and concrete mathematical model-
ing in Isabelle/Isar using the HOL logic. Our formal development uses specific
concepts of Isabelle/HOL to some advantage, namely axiomatic type classes and
type abstraction (cf. chapter 7). This nicely accommodates the notoriously cum-
bersome formal treatment of algebraic quotient structures; cf. [Harrison, 1996c]
for a more traditional treatment within HOL-Light, involving some additional
ML programming.

9.2 Quotient types

theory Quotient = Main:

We introduce the notion of generic quotient types over equivalence relations,
together with definition principles for operations on quotients. Some basic ideas
of this formalization stem from [Slotosch, 1997].

9.2.1 Equivalence relations and quotient types

Type class equiv models equivalence relations ∼ :: ′a ⇒ ′a ⇒ bool.

9.2. Quotient types 233

axclass eqv ⊆ term

consts

eqv :: (′a::eqv) ⇒ ′a ⇒ bool (infixl ∼ 50)

axclass equiv ⊆ eqv

equiv-refl [intro]: x ∼ x

equiv-trans [trans]: x ∼ y =⇒ y ∼ z =⇒ x ∼ z

equiv-sym [elim?]: x ∼ y =⇒ y ∼ x

The quotient type ′a quot consists of all equivalence classes over elements of the
base type ′a.

typedef ′a quot = {{x . a ∼ x} | a:: ′a::eqv . True}
by blast

lemma quotI [intro]: {x . a ∼ x} ∈ quot

by (unfold quot-def) blast

lemma quotE [elim]: R ∈ quot =⇒ (
∧

a. R = {x . a ∼ x} =⇒ C) =⇒ C

by (unfold quot-def) blast

Equivalence classes are the canonical representation of quotient elements.

constdefs
class :: ′a::equiv ⇒ ′a quot (b-c)
bac ≡ Abs-quot {x . a ∼ x}

theorem quot-exhaust : ∃ a. A = bac
proof (cases A)

fix R assume R: A = Abs-quot R
assume R ∈ quot hence ∃ a. R = {x . a ∼ x} by blast
with R have ∃ a. A = Abs-quot {x . a ∼ x} by blast
thus ?thesis by (unfold class-def)

qed

lemma quot-cases [cases type: quot]: (
∧

a. A = bac =⇒ C) =⇒ C
by (insert quot-exhaust) blast

9.2.2 Equality on quotients

Equality of canonical quotient elements coincides with the original relation.

theorem quot-equality [iff?]: (bac = bbc) = (a ∼ b)
proof

assume bac = bbc
hence {x . a ∼ x} = {x . b ∼ x}

by (simp only : class-def Abs-quot-inject quotI)
moreover have a ∼ a ..
ultimately have a ∈ {x . b ∼ x} by blast

234 CHAPTER 9. Example: Rational numbers

hence b ∼ a by blast
thus a ∼ b ..

next
assume eqv : a ∼ b
have {x . a ∼ x} = {x . b ∼ x}
proof (rule Collect-cong)

fix x show (a ∼ x) = (b ∼ x)
proof

from eqv have b ∼ a ..
also assume . . . ∼ x
finally show b ∼ x .

next
note eqv
also assume b ∼ x
finally show a ∼ x .

qed
qed
thus bac = bbc by (simp only : class-def)

qed

9.2.3 Picking representing elements

We define the operation pick for selecting representing elements from equiva-
lence classes, which are always inhabited due to reflexivity of the underlying
relation of “∼”. All representatives are equivalent; the specific one chosen by
pick is left unspecified due to Hilbert’s choice operator (cf. §8.5).

constdefs

pick :: ′a::equiv quot ⇒ ′a

pick A ≡ SOME a. A = bac

theorem pick-equiv [intro]: pick bac ∼ a

proof (unfold pick-def)

show (SOME x . bac = bxc) ∼ a

proof (rule someI 2)

show bac = bac ..

fix x assume bac = bxc
hence a ∼ x ..

thus x ∼ a ..

qed

qed

theorem pick-inverse [intro]: bpick Ac = A

proof (cases A)

fix a assume a: A = bac
hence pick A ∼ a by (simp only : pick-equiv)

hence bpick Ac = bac ..

with a show ?thesis by simp

9.3. Rational numbers 235

qed

The following rules support canonical function definitions on quotient types
(with ≤ 2 arguments). The general version covers conditional definitions; the
simpler unconditional formulation is already sufficient for most applications.

theorem quot-cond-function:
(
∧

X Y . P X Y =⇒ f X Y ≡ g (pick X) (pick Y)) =⇒
(
∧

x x ′ y y ′. bxc = bx ′c =⇒ byc = by ′c
=⇒ P bxc byc =⇒ P bx ′c by ′c =⇒ g x y = g x ′ y ′) =⇒

P bac bbc =⇒ f bac bbc = g a b
(is PROP ?def =⇒ PROP ?cong =⇒ - =⇒ -)

proof −
assume cong : PROP ?cong
assume PROP ?def and P bac bbc
hence f bac bbc = g (pick bac) (pick bbc) by (simp only :)
also have g (pick bac) (pick bbc) = g a b
proof (rule cong)

show bpick bacc = bac ..
moreover
show bpick bbcc = bbc ..
moreover
show P bac bbc .
ultimately
show P bpick bacc bpick bbcc by (simp only :)

qed
finally show ?thesis .

qed

theorem quot-function:
(
∧

X Y . f X Y ≡ g (pick X) (pick Y)) =⇒
(
∧

x x ′ y y ′. bxc = bx ′c =⇒ byc = by ′c =⇒ g x y = g x ′ y ′) =⇒
f bac bbc = g a b

proof −
case antecedent from this TrueI
show ?thesis by (rule quot-cond-function)

qed

end

9.3 Rational numbers

theory Rational-Numbers = Quotient + Ring-and-Field :1

The field of rational numbers is represented in the canonical fashion: we start
with concrete fractions over integers, define standard algebraic operations on

1Theory Ring-and-Field is imported from [Bauer et al., 2001].

236 CHAPTER 9. Example: Rational numbers

fractions, and establish the corresponding congruence properties. The resulting
structure is then abstracted by a quotient type construction.

9.3.1 Fractions over integers

The type of fractions

Type fraction is represented by the set of pairs over integers, with numerator
and denominator components, such that the latter is always non-zero.

typedef fraction = {(a, b) :: int × int | a b. b 6= 0}
proof

show (0, #1) ∈ ?fraction by simp

qed

constdefs

fract :: int ⇒ int ⇒ fraction

fract a b ≡ Abs-fraction (a, b)

num :: fraction ⇒ int

num Q ≡ fst (Rep-fraction Q)

den :: fraction ⇒ int

den Q ≡ snd (Rep-fraction Q)

We derive basic properties of the selector operations, as well as canonical rep-
resentation rules.

lemma fract-num [simp]: b 6= 0 =⇒ num (fract a b) = a
by (simp add : fract-def num-def fraction-def Abs-fraction-inverse)

lemma fract-den [simp]: b 6= 0 =⇒ den (fract a b) = b
by (simp add : fract-def den-def fraction-def Abs-fraction-inverse)

lemma fraction-cases [cases type: fraction]:
(
∧

a b. Q = fract a b =⇒ b 6= 0 =⇒ C) =⇒ C
proof −

assume r :
∧

a b. Q = fract a b =⇒ b 6= 0 =⇒ C
obtain a b where Q = fract a b and b 6= 0

by (cases Q) (auto simp add : fract-def fraction-def)
thus C by (rule r)

qed

lemma fraction-induct [induct type: fraction]:
(
∧

a b. b 6= 0 =⇒ P (fract a b)) =⇒ P Q
by (cases Q) simp

Equivalence of fractions

We instantiate the generic theory of quotient types (cf. §9.2) by defining the
“∼” relation for fractions appropriately. The properties of equivalence relations

9.3. Rational numbers 237

are proven as well, turning type fraction into an instance of the equiv class.

instance fraction :: eqv ..

defs (overloaded)
equiv-fraction-def : Q ∼ R ≡ num Q ∗ den R = num R ∗ den Q

lemma equiv-fraction-iff :
b 6= 0 =⇒ b ′ 6= 0 =⇒ (fract a b ∼ fract a ′ b ′) = (a ∗ b ′ = a ′ ∗ b)

by (simp add : equiv-fraction-def)

lemma equiv-fractionI [intro]:
a ∗ b ′ = a ′ ∗ b =⇒ b 6= 0 =⇒ b ′ 6= 0 =⇒ fract a b ∼ fract a ′ b ′

by (insert equiv-fraction-iff) blast

lemma equiv-fractionD [dest]:
fract a b ∼ fract a ′ b ′ =⇒ b 6= 0 =⇒ b ′ 6= 0 =⇒ a ∗ b ′ = a ′ ∗ b

by (insert equiv-fraction-iff) blast

instance fraction :: equiv
proof

fix Q R S :: fraction
{

show Q ∼ Q
proof (induct Q)

fix a b :: int
assume b 6= 0 and b 6= 0
with refl show fract a b ∼ fract a b ..

qed
next

assume Q ∼ R and R ∼ S
show Q ∼ S
proof (insert prems, induct Q , induct R, induct S)

fix a b a ′ b ′ a ′′ b ′′ :: int
assume b: b 6= 0 and b ′: b ′ 6= 0 and b ′′: b ′′ 6= 0
assume fract a b ∼ fract a ′ b ′ hence eq1: a ∗ b ′ = a ′ ∗ b ..
assume fract a ′ b ′ ∼ fract a ′′ b ′′ hence eq2: a ′ ∗ b ′′ = a ′′ ∗ b ′ ..
have a ∗ b ′′ = a ′′ ∗ b
proof cases

assume a ′ = 0
with b ′ eq1 eq2 have a = 0 ∧ a ′′ = 0 by auto
thus ?thesis by simp

next
assume a ′: a ′ 6= 0
from eq1 eq2 have (a ∗ b ′) ∗ (a ′ ∗ b ′′) = (a ′ ∗ b) ∗ (a ′′ ∗ b ′) by simp
hence (a ∗ b ′′) ∗ (a ′ ∗ b ′) = (a ′′ ∗ b) ∗ (a ′ ∗ b ′) by (simp only : zmult-ac)
with a ′ b ′ show ?thesis by simp

qed
thus fract a b ∼ fract a ′′ b ′′ ..

qed

238 CHAPTER 9. Example: Rational numbers

next
show Q ∼ R =⇒ R ∼ Q
proof (induct Q , induct R)

fix a b a ′ b ′ :: int
assume b: b 6= 0 and b ′: b ′ 6= 0
assume fract a b ∼ fract a ′ b ′

hence a ∗ b ′ = a ′ ∗ b ..
hence a ′ ∗ b = a ∗ b ′ ..
thus fract a ′ b ′ ∼ fract a b ..

qed
}

qed

lemma eq-fraction-iff :
b 6= 0 =⇒ b ′ 6= 0 =⇒ (bfract a bc = bfract a ′ b ′c) = (a ∗ b ′ = a ′ ∗ b)

by (simp add : equiv-fraction-iff quot-equality)

lemma eq-fractionI [intro]:
a ∗ b ′ = a ′ ∗ b =⇒ b 6= 0 =⇒ b ′ 6= 0 =⇒ bfract a bc = bfract a ′ b ′c

by (insert eq-fraction-iff) blast

lemma eq-fractionD [dest]:
bfract a bc = bfract a ′ b ′c =⇒ b 6= 0 =⇒ b ′ 6= 0 =⇒ a ∗ b ′ = a ′ ∗ b

by (insert eq-fraction-iff) blast

Operations on fractions

We define basic arithmetic operations on fractions and demonstrate their “well-
definedness”, i.e. congruence with respect to the underlying equivalence relation.
As it happens, this rather “trivial” technical issue turns out to be the most
tedious part of the whole construction of rational numbers. We are careful to
pass only basic operations on fractions through the quotient construction (0, +,
unary −, ∗, and unary inverse). Further derived operations will be introduced
later on for rational numbers only, without referring to the representation.

instance fraction :: zero ..
instance fraction :: plus ..
instance fraction :: minus ..
instance fraction :: times ..
instance fraction :: inverse ..

defs (overloaded)
zero-fraction-def : 0 ≡ fract 0 #1
add-fraction-def : Q + R ≡

fract (num Q ∗ den R + num R ∗ den Q) (den Q ∗ den R)
minus-fraction-def : −Q ≡ fract (−(num Q)) (den Q)
mult-fraction-def : Q ∗ R ≡ fract (num Q ∗ num R) (den Q ∗ den R)
inverse-fraction-def : inverse Q ≡ fract (den Q) (num Q)

9.3. Rational numbers 239

lemma is-zero-fraction-iff : b 6= 0 =⇒ (bfract a bc = b0c) = (a = 0)
by (simp add : zero-fraction-def eq-fraction-iff)

theorem add-fraction-cong :
bfract a bc = bfract a ′ b ′c =⇒ bfract c dc = bfract c ′ d ′c

=⇒ b 6= 0 =⇒ b ′ 6= 0 =⇒ d 6= 0 =⇒ d ′ 6= 0
=⇒ bfract a b + fract c dc = bfract a ′ b ′ + fract c ′ d ′c

proof −
assume neq : b 6= 0 b ′ 6= 0 d 6= 0 d ′ 6= 0
assume bfract a bc = bfract a ′ b ′c hence eq1: a ∗ b ′ = a ′ ∗ b ..
assume bfract c dc = bfract c ′ d ′c hence eq2: c ∗ d ′ = c ′ ∗ d ..
have bfract (a ∗ d + c ∗ b) (b ∗ d)c = bfract (a ′ ∗ d ′ + c ′ ∗ b ′) (b ′ ∗ d ′)c
proof

show (a ∗ d + c ∗ b) ∗ (b ′ ∗ d ′) = (a ′ ∗ d ′ + c ′ ∗ b ′) ∗ (b ∗ d) (is ?lhs = ?rhs)
proof −

have ?lhs = (a ∗ b ′) ∗ (d ∗ d ′) + (c ∗ d ′) ∗ (b ∗ b ′)
by (simp add : int-distrib zmult-ac)

also have . . . = (a ′ ∗ b) ∗ (d ∗ d ′) + (c ′ ∗ d) ∗ (b ∗ b ′)
by (simp only : eq1 eq2)

also have . . . = ?rhs
by (simp add : int-distrib zmult-ac)

finally show ?thesis .
qed
from neq show b ∗ d 6= 0 by simp
from neq show b ′ ∗ d ′ 6= 0 by simp

qed
with neq show ?thesis by (simp add : add-fraction-def)

qed

theorem minus-fraction-cong :
bfract a bc = bfract a ′ b ′c =⇒ b 6= 0 =⇒ b ′ 6= 0

=⇒ b−(fract a b)c = b−(fract a ′ b ′)c
proof −

assume neq : b 6= 0 b ′ 6= 0
assume bfract a bc = bfract a ′ b ′c
hence a ∗ b ′ = a ′ ∗ b ..
hence −a ∗ b ′ = −a ′ ∗ b by simp
hence bfract (−a) bc = bfract (−a ′) b ′c ..
with neq show ?thesis by (simp add : minus-fraction-def)

qed

theorem mult-fraction-cong :
bfract a bc = bfract a ′ b ′c =⇒ bfract c dc = bfract c ′ d ′c

=⇒ b 6= 0 =⇒ b ′ 6= 0 =⇒ d 6= 0 =⇒ d ′ 6= 0
=⇒ bfract a b ∗ fract c dc = bfract a ′ b ′ ∗ fract c ′ d ′c

proof −
assume neq : b 6= 0 b ′ 6= 0 d 6= 0 d ′ 6= 0
assume bfract a bc = bfract a ′ b ′c hence eq1: a ∗ b ′ = a ′ ∗ b ..
assume bfract c dc = bfract c ′ d ′c hence eq2: c ∗ d ′ = c ′ ∗ d ..
have bfract (a ∗ c) (b ∗ d)c = bfract (a ′ ∗ c ′) (b ′ ∗ d ′)c

240 CHAPTER 9. Example: Rational numbers

proof
from eq1 eq2 have (a ∗ b ′) ∗ (c ∗ d ′) = (a ′ ∗ b) ∗ (c ′ ∗ d) by simp
thus (a ∗ c) ∗ (b ′ ∗ d ′) = (a ′ ∗ c ′) ∗ (b ∗ d) by (simp add : zmult-ac)
from neq show b ∗ d 6= 0 by simp
from neq show b ′ ∗ d ′ 6= 0 by simp

qed
with neq show bfract a b ∗ fract c dc = bfract a ′ b ′ ∗ fract c ′ d ′c

by (simp add : mult-fraction-def)
qed

theorem inverse-fraction-cong :
bfract a bc = bfract a ′ b ′c =⇒ bfract a bc 6= b0c =⇒ bfract a ′ b ′c 6= b0c

=⇒ b 6= 0 =⇒ b ′ 6= 0
=⇒ binverse (fract a b)c = binverse (fract a ′ b ′)c

proof −
assume neq : b 6= 0 b ′ 6= 0
assume bfract a bc 6= b0c and bfract a ′ b ′c 6= b0c
with neq obtain a 6= 0 and a ′ 6= 0 by (simp add : is-zero-fraction-iff)
assume bfract a bc = bfract a ′ b ′c
hence a ∗ b ′ = a ′ ∗ b ..
hence b ∗ a ′ = b ′ ∗ a by (simp only : zmult-ac)
hence bfract b ac = bfract b ′ a ′c ..
with neq show ?thesis by (simp add : inverse-fraction-def)

qed

9.3.2 Rational numbers

The type of rational numbers

The type rat is represented as an abstraction of the universal set of quotient
elements over fractions, wrt. the equivalence relation introduced before. We also
provide abstract versions of the pick and b-c operations from quotients, called
fraction-of and rat-of, respectively.

typedef (Rat)

rat = UNIV :: fraction quot set ..

lemma RatI [intro, simp]: Q ∈ Rat

by (simp add : Rat-def)

constdefs

fraction-of :: rat ⇒ fraction

fraction-of q ≡ pick (Rep-Rat q)

rat-of :: fraction ⇒ rat

rat-of Q ≡ Abs-Rat bQc

theorem rat-of-equality [iff?]: (rat-of Q = rat-of Q ′) = (bQc = bQ ′c)
by (simp add : rat-of-def Abs-Rat-inject)

9.3. Rational numbers 241

lemma rat-of : bQc = bQ ′c =⇒ rat-of Q = rat-of Q ′ ..

The canonical representation of rational numbers is by “fractional expressions”
of the form 〈a, b〉. Subsequently, we also establish common equality rules and
eliminations.

constdefs
Fract :: int ⇒ int ⇒ rat ((〈-,/ -〉))
〈a, b〉 ≡ rat-of (fract a b)

theorem Fract-inverse: bfraction-of 〈a, b〉c = bfract a bc
by (simp add : fraction-of-def rat-of-def Fract-def Abs-Rat-inverse pick-inverse)

theorem Fract-equality [iff?]: (〈a, b〉 = 〈c, d〉) = (bfract a bc = bfract c dc)
by (simp add : Fract-def rat-of-equality)

theorem eq-rat : b 6= 0 =⇒ d 6= 0 =⇒ (〈a, b〉 = 〈c, d〉) = (a ∗ d = c ∗ b)
by (simp add : Fract-equality eq-fraction-iff)

theorem Rat-cases [cases type: rat]:
(
∧

a b. q = 〈a, b〉 =⇒ b 6= 0 =⇒ C) =⇒ C
proof −

assume r :
∧

a b. q = 〈a, b〉 =⇒ b 6= 0 =⇒ C
obtain x where q = Abs-Rat x by (cases q)
moreover obtain Q where x = bQc by (cases x)
moreover obtain a b where Q = fract a b and b 6= 0 by (cases Q)
ultimately have q = 〈a, b〉 by (simp only : Fract-def rat-of-def)
thus ?thesis by (rule r)

qed

theorem Rat-induct [induct type: rat]:
(
∧

a b. b 6= 0 =⇒ P 〈a, b〉) =⇒ P q
by (cases q) simp

Canonical function definitions

The generic definitional principle on quotient types (§9.2.3) is now transferred to
rational numbers as follows. (The full conditional version will be only required
for inverse; otherwise the simple unconditional formulation is sufficient.)

theorem rat-cond-function:
(
∧

q r . P bfraction-of qc bfraction-of rc =⇒
f q r ≡ g (fraction-of q) (fraction-of r)) =⇒

(
∧

a b a ′ b ′ c d c ′ d ′.
bfract a bc = bfract a ′ b ′c =⇒ bfract c dc = bfract c ′ d ′c =⇒
P bfract a bc bfract c dc =⇒ P bfract a ′ b ′c bfract c ′ d ′c =⇒
b 6= 0 =⇒ b ′ 6= 0 =⇒ d 6= 0 =⇒ d ′ 6= 0 =⇒
g (fract a b) (fract c d) = g (fract a ′ b ′) (fract c ′ d ′)) =⇒

P bfract a bc bfract c dc =⇒ f 〈a, b〉 〈c, d〉 = g (fract a b) (fract c d)

242 CHAPTER 9. Example: Rational numbers

(is PROP ?def =⇒ PROP ?cong =⇒ ?P =⇒ -)
proof −

assume eq : PROP ?def and cong : PROP ?cong and P : ?P
have f (Abs-Rat bfract a bc) (Abs-Rat bfract c dc) = g (fract a b) (fract c d)
proof (rule quot-cond-function)

fix X Y assume P X Y
with eq show f (Abs-Rat X) (Abs-Rat Y) ≡ g (pick X) (pick Y)

by (simp add : fraction-of-def pick-inverse Abs-Rat-inverse)
next

fix Q Q ′ R R ′ :: fraction
show bQc = bQ ′c =⇒ bRc = bR ′c =⇒

P bQc bRc =⇒ P bQ ′c bR ′c =⇒ g Q R = g Q ′ R ′

by (induct Q , induct Q ′, induct R, induct R ′) (rule cong)
qed
thus ?thesis by (unfold Fract-def rat-of-def)

qed

theorem rat-function:
(
∧

q r . f q r ≡ g (fraction-of q) (fraction-of r)) =⇒
(
∧

a b a ′ b ′ c d c ′ d ′.
bfract a bc = bfract a ′ b ′c =⇒ bfract c dc = bfract c ′ d ′c =⇒
b 6= 0 =⇒ b ′ 6= 0 =⇒ d 6= 0 =⇒ d ′ 6= 0 =⇒
g (fract a b) (fract c d) = g (fract a ′ b ′) (fract c ′ d ′)) =⇒

f 〈a, b〉 〈c, d〉 = g (fract a b) (fract c d)
proof −

case antecedent from this TrueI
show ?thesis by (rule rat-cond-function)

qed

Standard operations on rational numbers

We are ready to provide the complete collection of arithmetic operations, ac-
cording to the generic signature underlying the class field of [Bauer et al., 2001].

instance rat :: zero ..
instance rat :: plus ..
instance rat :: minus ..
instance rat :: times ..
instance rat :: inverse ..
instance rat :: number ..

defs (overloaded)
zero-rat-def : 0 ≡ rat-of 0
number-of-rat-def : number-of b ≡ Fract (number-of b) #1
add-rat-def : q + r ≡ rat-of (fraction-of q + fraction-of r)
minus-rat-def : −q ≡ rat-of (−(fraction-of q))
diff-rat-def : q − r ≡ q + (−(r ::rat))
mult-rat-def : q ∗ r ≡ rat-of (fraction-of q ∗ fraction-of r)
inverse-rat-def : q 6= 0 =⇒ inverse q ≡ rat-of (inverse (fraction-of q))
divide-rat-def : r 6= 0 =⇒ q / r ≡ q ∗ inverse (r ::rat)

9.3. Rational numbers 243

theorem zero-rat : 0 = 〈0, #1〉
by (simp add : zero-rat-def zero-fraction-def rat-of-def Fract-def)

theorem add-rat : b 6= 0 =⇒ d 6= 0 =⇒ 〈a, b〉 + 〈c, d〉 = 〈a ∗ d + c ∗ b, b ∗ d〉
proof −

have 〈a, b〉 + 〈c, d〉 = rat-of (fract a b + fract c d)
by (rule rat-function, rule add-rat-def , rule rat-of , rule add-fraction-cong)

also
assume b 6= 0 d 6= 0
hence fract a b + fract c d = fract (a ∗ d + c ∗ b) (b ∗ d)

by (simp add : add-fraction-def)
finally show ?thesis by (unfold Fract-def)

qed

theorem minus-rat : b 6= 0 =⇒ −〈a, b〉 = 〈−a, b〉
proof −

have −〈a, b〉 = rat-of (−(fract a b))
by (rule rat-function, rule minus-rat-def , rule rat-of , rule minus-fraction-cong)

also assume b 6= 0 hence −(fract a b) = fract (−a) b
by (simp add : minus-fraction-def)

finally show ?thesis by (unfold Fract-def)
qed

theorem diff-rat : b 6= 0 =⇒ d 6= 0 =⇒ 〈a, b〉 − 〈c, d〉 = 〈a ∗ d − c ∗ b, b ∗ d〉
by (simp add : diff-rat-def add-rat minus-rat)

theorem mult-rat : b 6= 0 =⇒ d 6= 0 =⇒ 〈a, b〉 ∗ 〈c, d〉 = 〈a ∗ c, b ∗ d〉
proof −

have 〈a, b〉 ∗ 〈c, d〉 = rat-of (fract a b ∗ fract c d)
by (rule rat-function, rule mult-rat-def , rule rat-of , rule mult-fraction-cong)

also
assume b 6= 0 d 6= 0
hence fract a b ∗ fract c d = fract (a ∗ c) (b ∗ d)

by (simp add : mult-fraction-def)
finally show ?thesis by (unfold Fract-def)

qed

theorem inverse-rat : 〈a, b〉 6= 0 =⇒ b 6= 0 =⇒ inverse 〈a, b〉 = 〈b, a〉
proof −

assume neq : b 6= 0 and nonzero: 〈a, b〉 6= 0
hence bfract a bc 6= b0c

by (simp add : zero-rat eq-rat is-zero-fraction-iff)
with - inverse-fraction-cong [THEN rat-of]
have inverse 〈a, b〉 = rat-of (inverse (fract a b))
proof (rule rat-cond-function)

fix q assume cond : bfraction-of qc 6= b0c
have q 6= 0
proof (cases q)

fix a b assume b 6= 0 and q = 〈a, b〉

244 CHAPTER 9. Example: Rational numbers

from this cond show ?thesis
by (simp add : Fract-inverse is-zero-fraction-iff zero-rat eq-rat)

qed
thus inverse q ≡ rat-of (inverse (fraction-of q))

by (rule inverse-rat-def)
qed
also from neq nonzero have inverse (fract a b) = fract b a

by (simp add : inverse-fraction-def)
finally show ?thesis by (unfold Fract-def)

qed

theorem divide-rat :
〈c, d〉 6= 0 =⇒ b 6= 0 =⇒ d 6= 0 =⇒ 〈a, b〉 / 〈c, d〉 = 〈a ∗ d , b ∗ c〉

proof −
assume neq : b 6= 0 d 6= 0 and nonzero: 〈c, d〉 6= 0
hence c 6= 0 by (simp add : zero-rat eq-rat)
with neq nonzero show ?thesis

by (simp add : divide-rat-def inverse-rat mult-rat)
qed

The field of rational numbers

The final instantiation of type rat as a field is now imminent. This would make
any infrastructure offered for general fields available for rational numbers as well
(such as specific rules and proof tools).

instance rat :: field
proof

fix q r s :: rat
show (q + r) + s = q + (r + s)

by (induct q , induct r , induct s) (simp add : add-rat zadd-ac zmult-ac int-distrib)
show q + r = r + q

by (induct q , induct r) (simp add : add-rat zadd-ac zmult-ac)
show 0 + q = q

by (induct q) (simp add : zero-rat add-rat)
show (−q) + q = 0

by (induct q) (simp add : zero-rat minus-rat add-rat eq-rat)
show q − r = q + (−r)

by (induct q , induct r) (simp add : add-rat minus-rat diff-rat)
show (q ∗ r) ∗ s = q ∗ (r ∗ s)

by (induct q , induct r , induct s) (simp add : mult-rat zmult-ac)
show q ∗ r = r ∗ q

by (induct q , induct r) (simp add : mult-rat zmult-ac)
show #1 ∗ q = q

by (induct q) (simp add : number-of-rat-def mult-rat)
show (q + r) ∗ s = q ∗ s + r ∗ s

by (induct q , induct r , induct s) (simp add : add-rat mult-rat eq-rat int-distrib)
show q 6= 0 =⇒ inverse q ∗ q = #1

by (induct q) (simp add : inverse-rat mult-rat number-of-rat-def zero-rat eq-rat)
show r 6= 0 =⇒ q / r = q ∗ inverse r

9.4. Discussion 245

by (induct q , induct r) (simp add : mult-rat divide-rat inverse-rat zero-rat eq-rat)
qed

end

9.4 Discussion

9.4.1 Isar techniques

Unusual calculations

The proof of theorem quot-cond-function in §9.2.3 exhibits an interesting ex-
ample of a slightly unusual calculational sequence (cf. chapter 6). The most
basic calculations merely consist of several have facts composed via also and
finally, here we encounter a number of show statements linked via moreover
and ultimately.

have g (pick bac) (pick bbc) = g a b

proof (rule cong)

show bpick bacc = bac ..

moreover

show bpick bbcc = bbc ..

moreover

show P bac bbc .

ultimately

show P bpick bacc bpick bbcc by (simp only :)

qed

In the above proof body we need to establish 4 sub-problems, where the first
3 contribute to the last one. Thus we have essentially two overlapping threads
of reasoning, which have been connected via calculational proof commands.
Recall that Isar’s calculational elements are independent of the particular way
that intermediate facts are produced, show works just the same as plain have
(as far as the local result is concerned).
In the subsequent version of the proof, the basic flow of information is made
more explicit by explicit labeling of facts.

have g (pick bac) (pick bbc) = g a b

proof (rule cong)

show 1: bpick bacc = bac ..

show 2: bpick bbcc = bbc ..

show 3: P bac bbc .

from 1 2 3 show P bpick bacc bpick bbcc by (simp only :)

qed

While this form is probably more lucid wrt. the technical details, it is slightly
more awkward due to excessive naming of statements. The situation is not that

246 CHAPTER 9. Example: Rational numbers

bad after all, since we may get rid of the last label by the standard technique
of chaining via with instead of from (cf. §4.2.4).

have g (pick bac) (pick bbc) = g a b

proof (rule cong)

show 1: bpick bacc = bac ..

show 2: bpick bbcc = bbc ..

show P bac bbc .

with 1 2 show P bpick bacc bpick bbcc by (simp only :)

qed

Apparently, this works out reasonably well, because the original calculation has
been short and did not apply any intermediate rules yet, deferring the equational
composition of the ultimate result to the simplifier method in the very last step
(cf. §6.4.3). Beginning users of Isar might prefer this plain formulation above
over the neat calculational arrangement given before.

The following alternative formulation proceeds by individual substitution steps
in the text, replacing the simplifier method. This requires some rearrangement
of the order of sub-problems; we also swap the two equational facts in the
calculational sequence (the use of symmetric below causes the local result to
be swapped, while the version exported into the enclosing goal context is not
affected).

have g (pick bac) (pick bbc) = g a b

proof (rule cong)

show P bac bbc .

also show [symmetric]: bpick bacc = bac ..

also show [symmetric]: bpick bbcc = bbc ..

finally show P bpick bacc bpick bbcc .

qed

Thus we achieve an even more compact representation of the two intertwined
threads of reasoning, which is not so easily replaced by plain forward-chaining
anymore. On the other hand, this form is probably overly smart and might
confuse readers unnecessarily.

Side conditions and proven assumptions

The present theory of fractions inherently involves numerous side-conditions
about denominators being non-zero. This essentially amounts to subtyping,
which we would like to keep in the proof texts as implicit as possible.
PVS [Owre et al., 1996] treats such additional constraints mostly automatic by
virtue of its integrated system of “predicate subtypes”, which provides a reflec-
tion of logical statements within the type system. Note that PVS is essentially
based on untyped set-theory, augmented by specific infrastructure to treat this
particular kind of subtyping mostly behind the scenes. Nevertheless, PVS is
usually marketed as another version of Higher-Order Logic.

9.4. Discussion 247

As Isabelle/HOL is based on simply-typed set-theory according to the original
tradition of HOL (e.g. [Gordon, 2000]), we need to take care of additional con-
straints directly within the logic. As we shall see, this works out reasonably well
in Isar, without producing excessive formal noise in the text.

Throughout the theory we have followed the discipline to put side-conditions
just before the main conclusion of a rule, after any number of main premises
that tend to be filled-in by explicit forward-chaining of previous facts. A typical
statement is that of theorem inverse-fraction-cong (cf. §9.3.1).

theorem inverse-fraction-cong :

bfract a bc = bfract a ′ b ′c =⇒ bfract a bc 6= b0c =⇒ bfract a ′ b ′c 6= b0c
=⇒ b 6= 0 =⇒ b ′ 6= 0

=⇒ binverse (fract a b)c = binverse (fract a ′ b ′)c

Using such a rule in structured proof leaves any marginal side-conditions as open
sub-problems to be solved at the very end. In most cases, this would just be
done by assumption, referring implicitly to the current context. Sometimes such
auxiliary facts emerge indirectly from previous ones. While plain have would
require the result to be referenced explicitly, we may use a degenerate form of
obtain (cf. §5.3) in order to acquire “proven assumptions” that are ready for
implicit use later on.
The very proof of inverse-fraction-cong illustrates the use of both immediate
and proven assumptions to handle side-conditions. In the version given below
we have modified the text to point out implicit applications of standard rules
and assumptions directly.

proof −
assume b: b 6= 0 and b ′: b ′ 6= 0 note neq = b b ′

assume bfract a bc 6= b0c and bfract a ′ b ′c 6= b0c
with neq obtain a: a 6= 0 and a ′: a ′ 6= 0 by (simp add : is-zero-fraction-iff)

— acquire proven assumptions

assume bfract a bc = bfract a ′ b ′c
hence a ∗ b ′ = a ′ ∗ b

by (rule eq-fractionD) (rule b, rule b ′)

— apply standard rule, solving side-conditions by assumption

hence b ∗ a ′ = b ′ ∗ a by (simp only : zmult-ac)

hence bfract b ac = bfract b ′ a ′c
by (rule eq-fractionI) (rule a, rule a ′)

— apply standard rule, solving side-conditions by assumption

with neq show ?thesis by (simp add : inverse-fraction-def)

qed

Side-conditions of the same kind need to be treated over and over again in the
present application. Nevertheless, the formal detail required here is still at a
bearable level, due to the virtue of Isar proof processing to consider a problem
as solved up to immediate assumptions (cf. §3.2.3). This discipline is easily

248 CHAPTER 9. Example: Rational numbers

achieved due to the inherent structure of Isar proof texts, with local problems
being clearly delimited.
In contrast, unstructured proof scripts would usually require even “trivial” as-
sumption steps to be given explicitly by the user. This results in more cum-
bersome treatment of the numerous side-conditions encountered in the present
example. So users of tactic scripts would probably demand separate proof tools
for such specific situations.

Representation proofs

Our construction of the type of rational numbers involves a number of repre-
sentation proofs, in the sense that existing elements are considered as an image
of certain functions (with the domain expressed by additional conditions). The
obtain language element is particularly well-suited for this kind of reasoning.
The theory development eventually arrives at the canonical representation via
fractional expressions; cf. theorems Rat-cases and Rat-induct in §9.3.2. The
proof of theorem Rat-cases itself is particularly interesting, since it involves the
complete hierarchy of individual representations stemming from several HOL
typedef specifications that contribute to type rat.
Consequently, the proof has used a number of obtain statements (cf. §5.3),
composed by calculational elements (cf. chapter 6). Note that the 3rd occurrence
of obtain below plays a second role in introducing a proven assumption b 6= 0
for the side-condition to be covered implicitly in the final step.

theorem Rat-cases [cases type: rat]:

(
∧

a b. q = 〈a, b〉 =⇒ b 6= 0 =⇒ C) =⇒ C

proof −
assume r :

∧
a b. q = 〈a, b〉 =⇒ b 6= 0 =⇒ C

obtain x where q = Abs-Rat x by (cases q)

moreover obtain Q where x = bQc by (cases x)

moreover obtain a b where Q = fract a b and b 6= 0 by (cases Q)

ultimately have q = 〈a, b〉 by (simp only : Fract-def rat-of-def)

thus ?thesis by (rule r)

qed

Isar calculations work with any kind of facts; from this perspective there is noth-
ing special about obtain, as opposed to have, note, assume etc. (chapter 6).
In contrast, the builtin concept of iterated equalities in Mizar [Rudnicki, 1992]
[Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999] is quite picky about the
exact format required here. In particular, Mizar’s consider and given (which
are analogous to Isar’s obtain) may not be used together with complex proof
patterns involving linking of facts or iterated equalities.

Due to Isar’s flexible approach to calculational reasoning, we have been able to
traverse the nested representations of type rat adequately (following the struc-
ture as an abstracted version of fraction quot, cf. §9.3.2). Later on, results about

9.4. Discussion 249

abstract rational numbers would directly use the derived scheme of Rat-cases,
or its variant form Rat-induct presented in induction rule format.
For example, the proof of the field properties of type rat (§9.3.2) involves a
number of universal statements about rational numbers. Using the form of
(degenerate) induction that has been derived for type rat, we reduce the problem
to fractional expressions; the corresponding algebraic laws on these canonical
representations have already been established before.

fix q r s :: rat

show (q + r) + s = q + (r + s)

by (induct q , induct r , induct s) (simp add : add-rat zadd-ac zmult-ac int-distrib)

Here we give an enlarged version of this kind of reasoning, where the reduced
universal statements are made explicit in the text.

fix q r s :: rat

show (q + r) + s = q + (r + s)

proof (induct q , induct r , induct s)

fix a b c d e f :: int

assume b 6= 0 d 6= 0 f 6= 0

thus (〈a, b〉 + 〈c, d〉) + 〈e, f 〉 = 〈a, b〉 + (〈c, d〉 + 〈e, f 〉)
by (simp add : add-rat zadd-ac zmult-ac int-distrib)

qed

Note that in the instantiation proof of class field the conditional laws about the
inverse and “/” operations depend on the ability of induct to handle non-atomic
statements properly (cf. §5.4.5).

show q 6= 0 =⇒ inverse q ∗ q = #1 — (q occurs in premise)

by (induct q) (simp add : inverse-rat mult-rat number-of-rat-def zero-rat eq-rat)

show r 6= 0 =⇒ q / r = q ∗ inverse r — (r occurs in premise)

by (induct q , induct r) (simp add : mult-rat divide-rat inverse-rat zero-rat eq-rat)

Isar generally supports non-atomic statements in a uniform manner (cf. §5.2.5
and §5.4.5). Otherwise, we would have required the notorious detour via object-
level connectives in order to be able to apply induction rules (cf. the discussion
of induction in Isabelle proof scripts in [Nipkow and Paulson, 2001]). As the
present form of induction is rather degenerate indeed, such additional overhead
would have made our approach to representation proofs a less satisfactory one,
with the additional formal noise dominating an essentially trivial proof scheme.

9.4.2 HOL techniques

The HOL logic (cf. chapter 7 and chapter 8) underlying the Isabelle/HOL work-
ing environment admits several distinctive techniques based on inherent features
of the system that might occur slightly peculiar at first sight. Nevertheless,
these may become quite useful in tackling a few recurrent issues of formal logic

250 CHAPTER 9. Example: Rational numbers

applications in a simple manner. Here we focus on type abstraction and under-
specification, as encountered in our formulation of rational numbers.

Abstract types versus type abstraction

Abstraction is certainly an important issue for any kind of formal specification
environment. In general, specifications should be presented at an “adequate”
level of abstraction wherever possible. First of all, overly concrete mathematical
models may be crowded by irrelevant detail, which needs to be taken care of in
formal proofs. Furthermore, some accidental properties of a specific representa-
tion may get exploited by users later on, although not intended by the writer of
the specification. The latter effect is both philosophically unpleasing and may
lead into practical problems due to lacking modularity of theories.
On the other hand, extremely abstract presentations of mathematical ideas
may be quite far from what users would expect in the first place. A typical
example of this issue are abstract categorical characterizations of “well-known”
mathematical concepts. There is also some additional demand for logical tools
and techniques for highly abstract presentations. Users versed in techniques of
algebraic specification and model theory would probably request rather general
theory mechanisms and module systems, based on powerful features of category
theory, for example. These are not readily available in practically relevant logics
such as HOL (cf. chapter 7).

The issue of abstract versus concrete specification techniques is occasionally
linked to the axiomatic versus definitional method of exhibiting mathematical
results. In principle, a strictly definitional approach would easily lead to unex-
pected facts holding in the resulting theory development. A common example
of classical mathematics based on untyped set-theory is the definition of natural
numbers according to John von Neumann: 0 = {}, 1 = {0}, 2 = {0, 1} etc.
Most mathematicians would probably just choose to ignore accidental proper-
ties like 1 ∈ 2 or 1 ⊆ 2, while set-theory people would even make creative use
of such features to develop further useful concepts, e.g. ordinal numbers.

The HOL tradition is strongly biased towards the definitional approach (cf.
§7.1.2), using plain mathematical modeling as its key specification technique.
It might appear at first sight that notions of “abstract data types”, which are
commonplace in algebraic specification methods, would be quite alien to HOL.
Interestingly, HOL is able to reconcile the definitional and axiomatic methods
by proper use of its inherent virtues, though.
The key observation is that HOL’s typedef mechanism (cf. §7.1.2 and §8.6)
involves an inherent abstraction stage: the only link between the existing rep-
resenting set and the new type is via the fully abstract rep and abs functions.
Thus typedef acts very much like type abstraction in higher-order program-
ming languages, e.g. abstype in (old) ML.

For example, reconsider our present construction of rational numbers, based on

9.4. Discussion 251

a concrete representation of fractions as pairs of integers (cf. §9.3.1). While this
concrete mathematical model has enabled us to derive the intended properties
of the abstract idea of rational numbers, we have not been able to exploit any
accidental properties of the concrete representation in a meaningful manner.
In order to see this, assume a fully abstract axiomatic presentation of rational
numbers within HOL. Clearly, this enables us to prove the canonical presenta-
tion of rational numbers in terms of “fractional expressions” (cf. Rat-cases in
§9.3.2); from here we may work backwards towards the primitive representations
of quotient elements and concrete fractions, essentially deriving the abstract
characterization of the original typedef specifications as a theorem stating
∃ rep abs. type-definition rep abs {b(a, b)c | a b. b 6= 0} (cf. §8.6).
Note that the particular version of typedef in Isabelle/HOL includes another
(conservative) stage to introduced concrete constants naming these bijections,
which is not present in the original type definition primitive of the HOL formu-
lation [Gordon and Melham, 1993] [Pitts, 1993].

We see that HOL indeed provides a two-way path from type abstraction of
concrete mathematical structures back and forth to fully abstract types. It is
unclear whether this particular view on HOL type definitions has been consid-
ered as an important issue by its original designers (cf. the historical account
given in [Gordon, 2000]). Due to the way that HOL types are treated as a purely
syntactic classification of objects, there is not much freedom left in providing
a non-trivial definitional mechanism for types anyway. In particular, notions
of convertibility (or equality) of types are absent in HOL; so any link between
existing types and new ones need to be via abstract morphisms. There is no
way to identify elements of different HOL types directly.
As far as users of HOL are concerned, the typedef primitive is widely consid-
ered too arcane to be used directly in applications. Ever since the important
special case of inductive datatypes has become widely available in HOL imple-
mentations (cf. the overview given in [Berghofer and Wenzel, 1999]), users have
generally preferred concrete mathematical models based on a general class of
tree structures. Certainly, this often leads to specifications that are less abstract
than necessary, e.g. using lists instead of finite multisets, or association lists (i.e.
lists of pairs) instead of finitary functions (or general relations).

The present Isabelle/Isar example demonstrates that HOL type definitions may
get used directly in applications, even in classical mathematics. Due to the high-
level characterization of typedef via rules in cases or induct format (§7.1.2,
§8.6), we have been able to keep the formal noise at a reasonable level; the
generic obtain element (§5.3) has been a great help, too.

Partiality versus underspecification

Another recurrent issue in formal specification is that of “undefined” elements.
The present example of rational numbers already exhibits the most prominent

252 CHAPTER 9. Example: Rational numbers

instance of undefinedness, namely division by zero. People being introduced to
elementary arithmetic are usually given rather mysterious explanations about
the exact nature of q / 0, telling that it is “not permitted” to divide by zero.
Even in established (semi-formal) mathematics, there are quite different tradi-
tions of treating “definedness” issues of expressions. Sometimes side-conditions
like “provided that q / r is defined” are spelled out explicitly. Occasionally,
one even encounters statements of the form “for q / r ∈ Q”, based on the idea
that q / r must not be a rational number in the “undefined” case of r = 0,
otherwise one could conclude general facts like 0 ∗ (q / 0) = 0. Note that a
formal representation of the second idea may be achieved by “lifting” of basic
types, i.e. by adjoining an explicit “error element” Q ∪ {⊥}, where ⊥ /∈ Q.

In contrast, formal HOL is strongly biased towards totality, in the sense that
every syntactically well-formed type or term is always denoting something, al-
though it might be genuinely “unspecified”. Nevertheless, partial functions
may be easily represented via lifting, e.g. using the type ′a ⇒ ′b option in
Isabelle/HOL (cf. chapter 7); see [Müller and Slind, 1997] for further details
on treating partiality in a total setting. The general disadvantage of modeling
partiality explicitly is that it needs to be handled within formal proofs all the
time. So operations that are “almost total” (like division on rational numbers)
should better avoid this additional overhead. Consequently, we have preferred
the plain type of total HOL functions in our theory, using inverse :: rat ⇒ rat
and / :: rat ⇒ rat ⇒ rat.

There have been several attempts to reformulate the basic ideas of HOL with
partiality in mind, e.g. in the “Lutins” logic underlying IMPS [Farmer et al.,
1993]. Additional builtin support for automated totality reasoning is required to
turn the basic idea of first-class partiality into a practically useful environment.
The system of “predicate subtypes” of PVS [Owre et al., 1996] may get used
to model partial functions as well. Definedness reasoning would then be part of
the builtin semi-automated treatment of “type-checking conditions” (TCCs).
Systems based on the tradition of dependent type theory (e.g. Coq [Barras et
al., 1999]) would usually treat the present case of partiality by including the
non-zero property of divisors in the type of the division operator. While this is
theoretically very clean, it demands additional efforts in practical applications.
For example, definedness of divisors needs essentially be proven before being
able to write down expressions involving division; cf. the experience reported in
[Geuvers et al., 2000].

According to the main-stream tradition of using HOL, the informal concept of
“partial functions” is usually avoided altogether, just by inventing suitable re-
sults for “undefined” cases. For example, q / 0 could be forced to yield 0. Thus
we would also gain several useful algebraic properties to hold unconditionally,
such as ` inverse (inverse x) = x or ` inverse (−x) = −(inverse x). Acci-
dental properties like this often become quite useful for simplified treatment in
specific proof tools, cf. the related discussion on the field of real numbers given

9.4. Discussion 253

in [Harrison, 1996c].
Further established disciplines of treating “pseudo-partiality” in HOL involve
Hilbert’s choice operator (cf. §8.5) applied to the empty predicate. A similar
technique uses a universal unspecified dummy elements, like arbitrary :: ′a in
Isabelle/HOL [Nipkow et al., 2001]. Speaking in terms of the standard model-
theory of HOL [Pitts, 1993] such expressions denote fixed elements of a given
type, but are completely unknown within the formal system. Nevertheless, noth-
ing prevents the user to include such dummies in logical reasoning; basic facts
like ` arbitrary = arbitrary are certainly derivable within the logic. Thus we
may again observe unwanted accidental results arising from uncontrolled reason-
ing with coinciding instances of such “arbitrary” expressions, which may have
appeared as independent at first sight. A more robust solution would essentially
require a separate copy of arbitrary for each occurrence in the specification text.
Longterm experience with “arbitrary” HOL expressions has shown that such
tricks easily confuse uninitiated recipients. Including such features in a presen-
tation given to non-experts of HOL one is apt to distract the audience from the
main issues for quite some time.

As demonstrated by the present application of Isar, we may achieve a slightly
cleaner treatment of “undefined” expressions in full accordance with established
HOL traditions. Taking the term “undefined” literally, we simply exclude cer-
tain unwanted cases from the definition of a total function, achieving genuine
underspecification rather than explicit partiality. This idea has been expressed
natively via conditional definitions (of overloaded constants) in §9.3.2.

inverse-rat-def : q 6= 0 =⇒ inverse q ≡ rat-of (inverse (fraction-of q))

divide-rat-def : r 6= 0 =⇒ q / r ≡ q ∗ inverse (r ::rat)

There is nothing special about “partial” HOL definitions (cf. §7.1.2), conditional
equations are a trivial instance of the notion of conservative extensions employed
by the basic framework (cf. §2.3). Nevertheless, this form is rarely encountered
in existing applications of HOL, despite being very useful.
By ruling out pathological cases from the very beginning, we may be sure that
no accidental result involving specific treatment of inverse 0 and q / 0. Never-
theless, HOL remains faithful to its initial totality approach, so we may derive
instances of universal algebraic laws, such as 0 ∗ (q / 0) = 0 (since q / 0 is
guaranteed to be a rational number by virtue of its syntactic type). On the
other hand, inverse (−x) = −(inverse x) does not hold unconditionally, since
we cannot derive anything specific about r / q in the case of q = 0 that has
been excluded from the definition.

9.4.3 Arithmetic proof tools

Our present construction of the rational numbers based on fractions over integers
involves numerous instances of basic arithmetic reasoning.

254 CHAPTER 9. Example: Rational numbers

The common technique to handle such incidents has been to tweak Isabelle’s
simplifier, in order to make such “obvious” local statements work out in a single
step. Additional rewrite rules need to be specified whenever the (limited) builtin
support for integers arithmetic did not suffice. For example, some typical simp
method invocations taken from the instantiation proof of rat :: field (cf. §9.3.2).

(simp add : add-rat zadd-ac zmult-ac int-distrib)
(simp add : add-rat zadd-ac zmult-ac)
(simp add : mult-rat zmult-ac)
(simp add : add-rat mult-rat eq-rat int-distrib)

We see that “relevant” theorems about rational numbers (add-rat, mult-rat etc.)
get mixed with basic arithmetic facts about integers (zadd-ac, zmult-ac etc.),
which have been picked from the Isabelle/HOL library in an ad-hoc fashion.
This situation is slightly unsatisfactory, especially since there are many well-
known (semi-)decision procedures for interesting classes of arithmetic problems
in the literature. Isabelle/HOL happens to implement only very basic support
for a restricted class of linear arithmetic on integers (without multiplication)
[Nipkow et al., 2001]. Other systems like Coq [Barras et al., 1999], HOL [Gordon
and Melham, 1993], and PVS [Owre et al., 1996] offer their own collection of
arithmetic procedures with quite varying coverage of specific problems. PVS
is marketed as particularly strong in this respect; HOL-Light [Harrison, 1996a]
implements full arithmetic procedures for integers (Presburger arithmetic) and
the closed field of real numbers (according to Tarski).

In any case, users of interactive theorem proving systems routinely encounter
rather frustrating situations where the builtin support for arithmetic fails, re-
quiring particular cases to be proven by hand.
In principle, we have encountered the same situation in the present Isabelle/Isar
application many times. Nevertheless, the resulting proof text turns out to be
still quite acceptable. The lack of specific proof support did not affect the
basic structure of our proofs, but has only required more detailed proof method
specifications (especially of simp as indicated above), or prolonged a number of
calculation chains by demanding more detailed steps to be given.
Essentially, our ability in Isar to decompose failed atomic proof steps into fine-
grained arrangements of sub-problems (involving calculational reasoning) has
compensated the lack of powerful arithmetic automated proof support to some
degree. Apparently, high-level Isar proof elements have been able to magnify
the strength of the underlying inference systems.

A similar effect may be experienced in Mizar [Rudnicki, 1992] [Trybulec, 1993]
[Muzalewski, 1993] [Wiedijk, 1999]. The builtin notion of “obvious inferences”
[Rudnicki, 1987] is rather weak compared to existing proof tools of Isabelle
[Paulson and Nipkow, 1994] or PVS [Owre et al., 1996], neither is there is any
specific support for arithmetic problems. Nevertheless, Mizar users have been
able to develop a large body of classical mathematics [Mizar library], including
plenty of standard issues about arithmetic of integers, rationals, reals, etc. A

9.4. Discussion 255

frequently encountered technique is that of long chains of “iterated equalities”,
which are analogous to Isar’s calculations (cf. chapter 6).
Apparently, the lack of decent proof tools did not prevent useful work to be
done in Mizar, by virtue of adequate means to arrange the tedium of formal
reasoning in a structured manner. The same observation should be valid for
Isar as well. Of course, powerful tools for arithmetic problems would be useful
to support even larger applications. In any case, the Isar framework is able
to incorporate any specific proof methods that happen to become available as
tactic implementations in the underlying inference engine (cf. §7.3).

256 CHAPTER 9. Example: Rational numbers

Chapter 10

Example: Unix security

Unix is a simple but powerful operating system where everything is either a
process or a file. Access to system resources works mainly via the file-system,
including special files and devices, so Unix security issues are reflected directly
within the file-system. We give a mathematical model of the main aspects of the
Unix file-system including its security model, but ignoring processes. Within
this formal model we discuss some aspects of Unix security, including a few odd
effects caused by the general “worse-is-better” approach followed in Unix.

The resulting formal development demonstrates that Isabelle/Isar is sufficiently
flexible to cover the typical abstract modeling and verification tasks encountered
in computer-science applications of formal logic. So far this has been mainly
the domain of interactive theorem proving systems using unstructured tactic
languages.

10.1 Motivation

Over the last few years, tactical theorem proving systems like HOL [Gordon
and Melham, 1993], Coq [Barras et al., 1999], PVS [Owre et al., 1996], and
Isabelle [Paulson and Nipkow, 1994] have been successfully applied to sizable
applications, especially of those of computer-science, involving abstract model-
ing and verification tasks. For example, the Isabelle/Bali project [Bali] [Oheimb,
2001] provides an extensive formalization of several aspects of the Java program-
ming environment, covering the Java type system, operational semantics, and
axiomatic semantics.
Applications of this kind heavily depend on a number of characteristic tech-
niques for specification and formal proof, such as inductive definitions (of types,
sets, relations), recursive function definitions, and corresponding proof princi-
ples by case-analysis and induction. Typically, the structures encountered here

257

258 CHAPTER 10. Example: Unix security

are quite large, with many constructors or inductive cases, but not necessarily
very deep with respect to the mathematical concepts involved.
The usual outcome of the work of many person-months (or even person-years) is
then a body of theory definitions plus a large collection of proof scripts. Accord-
ing to widely accepted practice, the public presentation of such results involves
extensive discussions of the definitional part (including particular design deci-
sions in the formalization etc.), while actual formal proofs are mostly neglected.
There is a strong tendency to report on the size and complexity of proof scripts,
though, especially the degree of automation achieved by the collection of proof
tools available in the preferred theorem proving environment.
For example, the Java formalization of [Oheimb, 2001] consists of 1900 lines of
definitions and 5400 lines of tactic scripts. The definitions are included as an
appendix to document the actual formal representation, while proof scripts are
not given at all. Inspecting the real sources reveals that proof scripts follow the
typical style of advanced tactical proving, with heavy use of proof programming
techniques (operating on several sub-problems at the same time, or accommo-
dating specific structures encountered in the formalization). [Oheimb, 2001]
also covers a small synthetic example of concrete Java program verification; this
part includes an account of the technical complexity of proof scripts, since it
is an important parameter of the usability of the Java meta-theory in concrete
applications. In contrast, the proofs of the meta-theory are not covered at all.

Marginal treatment of formal proofs is commonplace in contemporary applica-
tions of the class of interactive theorem proving systems considered here. Some
systems even keep proof scripts apart from the specification parts of a theory by
separate technical means. For example, PVS [Owre et al., 1996] only holds the
statements of theorems in the actual theory source, while proof scripts are man-
aged separately (with some additional infrastructure for lemma dependencies
and change management). Classic Isabelle [Paulson and Nipkow, 1994] keeps
proof scripts in separate ML files, too, partly for purely technical reasons which
have been overcome in Isabelle99. Degrading proof scripts to second class was
nevertheless generally accepted among experienced Isabelle users as a natural
order, despite causing a number of practical inconveniences (cf. §7.5.1).
In contrast, Coq [Barras et al., 1999] keeps definitions and proof scripts within
the same input source, reflecting the intrinsic virtue of type theory that both
are actually the same internally, despite being composed by different technical
means (immediate λ-terms versus incremental tactic applications). The original
LCF/HOL tradition [Gordon, 2000] treats definitions and proofs uniformly as
ML programs (mostly restricted to applications of certain standard functions).

The deeper cause for the general disregard of actual proofs in common applica-
tions of mainstream formal reasoning systems may be essentially twofold. On
the one hand, existing tactical theorem proving systems do not provide any
means to express proofs in a human-readable way in the first place. On the
other hand, people who use (and develop) such systems often consider readable
proofs as unimportant, being content to present formal accounts of their work

10.1. Motivation 259

to the machine only. Certainly, these two aspects depend on each other; existing
systems just happen to have evolved to support this particular proof-less mode
of operation, which then happen to support a particular range of applications
in a reasonable manner. This might also explain why there are less applications
from traditional mathematics encountered in this area. Interestingly, the large
body of standard analysis developed in [Harrison, 1996c] mainly serves as an
auxiliary theory for program verification issues as well.
In contrast, the Mizar system [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski,
1993] [Wiedijk, 1999] has been able to support a large library of formalized
mathematics [Mizar library] of approximately 50 MB of sources organized in
700 articles, which has been developed over 2 decades. This successful case of
machine-checked proof developments made accessible for human consumption
probably also draws from established practice of mainstream mathematics where
real proofs are not given up lightly.

From the present Isar perspective, the key question to be raised here is whether
the case for inclusion of actual formal proofs may be extended beyond pure
logic (e.g. chapter 4, chapter 8) and classical mathematics (e.g. chapter 9) to
computer-science applications involving abstract modeling and verification that
are still mainly the domain of existing tactical systems. To this end, we shall
present a non-trivial formal development completely with all definitions and
formal proofs. In particular, proof texts may stand for themselves; we shall
refrain from reporting accidental technical properties, such as the degree of
automation achieved.
Another important question is whether exposing real proofs to the audience of
computer-science applications makes any sense at all. Certainly, badly written
proofs are better excluded from general public coverage. On the other hand,
lucid formal expositions may greatly benefit from being more widely accepted
as a viable account of the work achieved here, as well as help others to con-
duct similar or even more advanced applications of formal logic. There is no
indication that this particular area of applied logic should be excluded from the
free flow of ideas and techniques. If we really want to prevent relevant formal
developments to be treated like black-boxes that are disclosed from public view
we do need suitable means to make the resulting developments accessible to
human consumption.

Human-readable proofs have already been encountered in computer-science ap-
plications before. [Mizar library] includes a number articles that qualify to be-
long to this domain, such as the meta-theory of classical first-order logic (articles
#93, #97, #199, #253, #375), Petri nets (articles #137, #261, #262, #263,
#298, #330), and over 30 articles about a “small computer model” (SCM)
with both theoretical results and several concrete example programs (including
correctness proofs). Certainly, these examples are only very few compared to
the remaining body of classical mathematics formalized in Mizar. Furthermore,
Mizar has been designed as a “closed” system for the particular domain of stan-
dard mathematical applications, there is no way to introduce new definitional

260 CHAPTER 10. Example: Unix security

mechanisms or specialized proof tools; thus verification tasks turn out as slightly
cumbersome, performing inductive constructions manually within primitive set-
theory, and conducting routine proofs over many pages in rather small technical
reasoning steps, for example.
DECLARE [Syme, 1997a] [Syme, 1998] [Syme, 1999] has been designed as a
specific system for “declarative theorem proving” about syntax and semantics
of formal languages in the first place. The system has been evaluated by an
example development about Java type soundness [Syme, 1997b] [Syme, 1998].

The key difference to Isabelle/Isar is that the latter has not been made to work
for a fixed application domain, but grown to cover a broad range, following the
tradition of “generic theorem proving” of the Isabelle framework [Paulson, 1989]
[Paulson, 1990] [Paulson and Nipkow, 1994], extending it to the upper levels of
human-readable proof texts. Thus by providing a number of general principles
that may be combined in many ways, we are able to cover the present range of
applications of formal-reasoning systems from end-to-end, including primitive
logic just as well as advanced modeling and verification problems encountered
in computer-science. Certainly, the Isabelle/Isar system is open for even further
areas to be explored by creative users.
The subsequent development of some aspects of Unix file-system security es-
sentially demands all of the advanced Isar techniques covered in chapter 5 and
chapter 6. Nevertheless, we need not really stretch the system very far, even
larger applications could be performed quite easily. E.g. see Isabelle/MicroJava
[Klein et al., 2001], which consists of several structured proof texts, although it
includes numerous old theories using unreadable proof scripts.

10.2 Introduction

10.2.1 The Unix philosophy

Over the last three decades the Unix community has collected a certain amount
of folklore wisdom on building systems that actually work, see [Unix Heritage
Society] and [PDP Unix Preservation Society] for further background informa-
tion. The following account of the philosophical principles behind the Unix
way of software and systems engineering have appeared on http://slashdot.com
(25-March-2000).

The UNIX Philosophy (Score:2, Insightful)

by yebb on Saturday March 25, @11:06AM EST (#69)

(User Info)

The philosophy is a result of more than twenty years of software

development and has grown from the UNIX community instead of being

enforced upon it. It is a defacto-style of software development. The

nine major tenets of the UNIX Philosophy are:

1. small is beautiful

http://slashdot.com

10.2. Introduction 261

2. make each program do one thing well

3. build a prototype as soon as possible

4. choose portability over efficiency

5. store numerical data in flat files

6. use software leverage to your advantage

7. use shell scripts to increase leverage and portability

8. avoid captive user interfaces

9. make every program a filter

The Ten Lesser Tenets

1. allow the user to tailor the environment

2. make operating system kernels small and lightweight

3. use lower case and keep it short

4. save trees

5. silence is golden

6. think parallel

7. the sum of the parts if greater than the whole

8. look for the ninety percent solution

9. worse is better

10. think hierarchically

The “worse-is-better” approach quoted above is particularly interesting. It ba-
sically means that relevant concepts have to be implemented in the right way,
while irrelevant issues are simply ignored in order to avoid unnecessary compli-
cation of the design and implementation. Certainly, the overall quality of the
resulting system heavily depends on the virtue of distinction between the two
categories of “relevant” and “irrelevant”.

10.2.2 Unix security

The main entities of a Unix system are files and processes (e.g. [Tanenbaum,
1992]). Files subsume any persistent “static” entity managed by the system,
ranging from plain files and directories, to special ones such as device nodes,
pipes, sockets etc. On the other hand, processes are “dynamic” entities that
may perform certain operations while being run by the system.
The security model of classic Unix systems is centered around the file system.
The operations permitted by a process that is run by a certain user are deter-
mined from information stored within the file system. This includes any kind
of access control, e.g. read/write access to some plain file, or read-only access
to a certain global device node etc. Thus proper arrangement of the main Unix
file-system is very critical for overall security. (Incidently, this is the deeper
reason why the operation of mounting new volumes into the existing file space
is usually restricted to the super-user.)

Generally speaking, the Unix security model is a very simplistic one. The origi-
nal designers did not have maximum security in mind, but wanted to get a decent
system working for typical multi-user environments. Contemporary Unix imple-
mentations still follow the basic security model of the original versions from the
early 1970’s [Ritchie and Thompson, 1974]. Even back then there would have

262 CHAPTER 10. Example: Unix security

been better approaches available, albeit with more complexity involved both for
implementers and users.
On the other hand, even in the 2000’s many computer systems are run with little
or no file-system security at all, even though virtually any system is exposed
to the net. Even “personal” computer systems have long left the comfortable
home environment and entered the wilderness of the open net sphere.

This treatment of file-system security is a typical example of the “worse-is-
better” principle introduced above. The simplistic security model of Unix got
widely accepted within a large user community, while the more innovative (and
cumbersome) ones are only used very reluctantly and even tend to be disabled
by default in order to avoid confusion of beginners.

10.2.3 Odd effects

Simplistic systems usually work very well in typical situations, but tend to
exhibit some odd features in atypical ones. As far as Unix file-system security
is concerned, there are many such features that are well-known to experts, but
may surprise uninitiated users.
Subsequently, we consider an example that is not so exotic after all. As may
be easily experienced on a running Unix system, the following sequence of com-
mands may put a user’s file-system into an uncouth state. Below we assume
that user1 and user2 are working within the same directory (e.g. somewhere
within the home of user1).

user1> umask 000; mkdir foo

user2> umask 022; mkdir foo/bar

user2> touch foo/bar/baz

That is, user1 creates a directory that is writable for everyone, and user2 puts
there a non-empty directory without write access for others.
In this situation it has become impossible for user1 to remove his very own
directory foo without cooperation of user2, since foo contains another non-
empty and non-writable directory, which cannot be removed just now.

user1> rmdir foo

rmdir: directory "foo": Directory not empty

user1> rmdir foo/bar

rmdir: directory "bar": Directory not empty

user1> rm foo/bar/baz

rm not removed: Permission denied

Only after user2 has cleaned up his directory bar, is user1 enabled to remove
both foo/bar and foo. Alternatively, user2 could remove foo/bar as well. In
the unfortunate case that user2 does not cooperate or happens to be temporar-
ily unavailable, user1 would have to find the super user (root) to clean up the

10.3. Unix file-systems 263

situation. In Unix root may perform any file-system operation without any
access control limitations.
This is the typical Unix way of handling abnormal situations: while it is easy to
run into odd cases due to simplistic policies it is as well quite easy to get out.
There are other well-known systems around that make it somewhat harder to
get into trouble, but almost impossible to escape again!

Is there really no escape for user1? Experiments can only show possible ways,
but never demonstrate the absence of other means exhaustively. This is a typical
situation where (formal) proof may help. Subsequently, we model the main as-
pects Unix file-system security within the Isabelle/HOL environment (cf. chap-
ter 7) and prove that there is indeed no way for user1 to get rid of his directory
foo without help by others (see §10.6.4 for the main theorem stating this).

10.3 Unix file-systems

theory Unix = Nested-Environment + List-Prefix :1

We give a simple mathematical model of the basic structures underlying the
Unix file-system, together with a few fundamental operations that could be
imagined to be performed internally by the Unix kernel. This forms the basis
for the set of Unix system-calls to be introduced later on (see §10.4), which are
the actual interface offered to processes running in user-space.

Basically, any Unix file is either a plain file or a directory, consisting of some
content plus attributes. The content of a plain file is plain text. The content of
a directory is a mapping from names to further files. In fact, this is the only
way that names get associated with files. In Unix files do not have a name in
itself. Even more, any number of names may be associated with the very same
file due to hard links (although this is not handled in our model). Attributes
include information to control various ways to access the file (read, write etc.).
Our model will be quite liberal in omitting excessive detail that is easily seen to
be “irrelevant” for the aspects of Unix file-systems to be discussed here. First
of all, we ignore character and block special files, pipes, sockets, hard links,
symbolic links, and mount points.

10.3.1 Names

User ids and file name components shall be represented by natural numbers
(without loss of generality). We do not bother about encoding of actual names
(e.g. strings), nor a mapping between user names and user ids as would be
present in reality.

1Theories Nested-Environment and List-Prefix are included from [Bauer et al., 2001].

264 CHAPTER 10. Example: Unix security

types
uid = nat
name = nat
path = name list

10.3.2 Attributes

Unix file attributes mainly consist of owner information and permission bits,
which control access for “user”, “group”, and “others” (see also the Unix man
pages chmod(2) and stat(2) for details).

Our model of file permissions only considers the “others” part. The “user” field
may be omitted without loss of generality from the security point of view, since
the owner is usually able to change it anyway by performing chmod. We omit
“group” permissions as a genuine simplification, since we just do not intend to
discuss a model of multiple groups and group membership here, but pretend
that everyone is member of a single global group. A general HOL model of user
and group structures is given in [Naraschewski, 2001].

datatype perm =

Readable

| Writable

| Executable — ignored

types perms = perm set

record att =

owner :: uid

others :: perms

For plain files Readable and Writable specify read and write access to the actual
content, i.e. the string of text stored here. For directories Readable determines
if the set of entry names may be accessed, and Writable controls the ability to
create or delete any entries (both plain files or sub-directories).
As another simplification, we ignore the Executable permission altogether. In
reality it would indicate executable plain files (also known as “binaries”), or
control actual retrieval of directory entries (recall that mere directory browsing
is controlled via Readable). Note that the latter means that in order to perform
any file-system operation whatsoever, all directories encountered on the path
would have to grant Executable. We ignore this detail and pretend that all
directories give Executable permission to anybody, which is usually the case in
real-world file-systems anyway.

10.3.3 Files

In order to model the general tree structure of a Unix file-system we use the
arbitrarily branching datatype (′a, ′b, ′c) env from the supplemental library

10.3. Unix file-systems 265

of Isabelle/HOL [Bauer et al., 2001] (theory Nested-Environment). This type
provides constructors Val and Env as follows:

Val :: ′a ⇒ (′a, ′b, ′c) env

Env :: ′b ⇒ (′c ⇒ (′a, ′b, ′c) env option) ⇒ (′a, ′b, ′c) env

Here the parameter ′a refers to basic information occurring at leaf positions, pa-
rameter ′b to information kept with inner branch nodes, and parameter ′c to the
index type of the tree structure. For our purpose we use the type instance with
att × string (representing plain files), att (for attributes of directory nodes),
and name (for the index type of directory nodes).

types

file = (att × string , att , name) env

The theory also provides lookup and update operations for general tree structures
with the subsequent primitive recursive characterizations.

lookup :: (′a, ′b, ′c) env ⇒ ′c list ⇒ (′a, ′b, ′c) env option

update :: ′c list ⇒ (′a, ′b, ′c) env option ⇒ (′a, ′b, ′c) env ⇒ (′a, ′b, ′c) env

lookup env xs =
(case xs of [] ⇒ Some env
| x # xs ⇒

case env of Val a ⇒ None
| Env b es ⇒ case es x of None ⇒ None | Some e ⇒ lookup e xs)

update xs opt env =
(case xs of [] ⇒ case opt of None ⇒ env | Some e ⇒ e
| x # xs ⇒

case env of Val a ⇒ Val a
| Env b es ⇒

case xs of [] ⇒ Env b (es(x := opt))
| y # ys ⇒

Env b
(es(x := case es x of None ⇒ None

| Some e ⇒ Some (update (y # ys) opt e))))

Several basic properties of these operations are proven in the same theory. These
will be routinely used later on without further notice.

Apparently, the elements of type file contain an att component in either case.
Subsequently, we define a few auxiliary operations to manipulate this field uni-
formly, following the conventions for record types in Isabelle/HOL (cf. §7.2.3).

constdefs
attributes :: file ⇒ att
attributes file ≡

(case file of

266 CHAPTER 10. Example: Unix security

Val (att , text) ⇒ att
| Env att dir ⇒ att)

attributes-update :: att ⇒ file ⇒ file
attributes-update att file ≡

(case file of
Val (att ′, text) ⇒ Val (att , text)
| Env att ′ dir ⇒ Env att dir)

lemma [simp]: attributes (Val (att , text)) = att
by (simp add : attributes-def)

lemma [simp]: attributes (Env att dir) = att
by (simp add : attributes-def)

lemma [simp]: (Val (att , text)) (|attributes := att ′|) = Val (att ′, text)
by (simp add : attributes-update-def)

lemma [simp]: (Env att dir) (|attributes := att ′|) = Env att ′ dir
by (simp add : attributes-update-def)

lemma [simp]: attributes (file (|attributes := att |)) = att
by (cases file) (simp-all add : attributes-def split-tupled-all)

10.3.4 Initial file-systems

Given a set of known users a file-system shall be initialized by providing an
empty home directory for each user, with read-only access for everybody else.
Note that we may directly use the user id as home directory name, since both
types have been identified. Certainly, the very root directory is owned by the
super user (who has user id 0).

constdefs
init :: uid set ⇒ file
init users ≡

Env (|owner = 0, others = {Readable}|)
(λu. if u ∈ users then Some (Env (|owner = u, others = {Readable}|) empty)

else None)

10.3.5 Accessing file-systems

The main internal file-system operation is access of a file by a user, requesting
a certain set of permissions. The resulting file option indicates if the file had
been present at the corresponding path and if access was granted according to
the permissions recorded within the file-system.
Note that by the rules of Unix file-system security (cf. [Tanenbaum, 1992] and
our simplifications outlined before), both the super-user and owner may always
access a file unconditionally.

10.4. File-system transitions 267

constdefs

access :: file ⇒ path ⇒ uid ⇒ perms ⇒ file option

access root path uid perms ≡
(case lookup root path of

None ⇒ None

| Some file ⇒
if uid = 0

∨ uid = owner (attributes file)

∨ perms ⊆ others (attributes file)

then Some file

else None)

Successful access to a certain file is the main prerequisite for system-calls to be
applicable (see also §10.4). Any modification of the file-system is then performed
using the basic update operation of the nested environment type.

Apparently, access is just a wrapper for the basic lookup function, with addi-
tional checking of attributes. Subsequently we establish a few auxiliary facts
that stem from the primitive lookup used within access. The notion of indepen-
dent paths “‖” is defined in theory List-Prefix of [Bauer et al., 2001].

lemma access-empty-lookup: access root path uid {} = lookup root path
by (simp add : access-def split : option.splits)

lemma access-some-lookup:
access root path uid perms = Some file =⇒

lookup root path = Some file
by (simp add : access-def split : option.splits if-splits)

lemma access-update-other : path ′ ‖ path =⇒
access (update path ′ opt root) path uid perms = access root path uid perms

proof −
assume path ′ ‖ path
then obtain y z xs ys zs where

y 6= z and path ′ = xs @ y # ys and path = xs @ z # zs
by (blast dest : parallel-decomp)

hence lookup (update path ′ opt root) path = lookup root path
by (blast intro: lookup-update-other)

thus ?thesis by (simp only : access-def)
qed

10.4 File-system transitions

10.4.1 Unix system calls

According to established operating system design (cf. [Tanenbaum, 1992]) user
space processes may only initiate system operations by a fixed set of system-
calls. This principle enables the kernel to enforce certain security policies in

268 CHAPTER 10. Example: Unix security

the first place. This is essentially the very same idea employed by “LCF-style”
theorem proving systems according to Milner’s principle of “Correctness by
Construction”, such as Isabelle itself.

In our model of Unix we give a fixed datatype operation for the syntax of system-
calls, together with a relation of file-system state transitions root −x→ root ′ as
operational semantics introduced later on.

datatype operation =

Read uid string path

| Write uid string path

| Chmod uid perms path

| Creat uid perms path

| Unlink uid path

| Mkdir uid perms path

| Rmdir uid path

| Readdir uid name set path

The uid field of an operation corresponds to the effective user id of the underly-
ing process, although our model never mentions processes explicitly. The other
parameters are provided as arguments by the caller; the path is common to all
kinds of system-calls.

consts

uid-of :: operation ⇒ uid

primrec

uid-of (Read uid text path) = uid

uid-of (Write uid text path) = uid

uid-of (Chmod uid perms path) = uid

uid-of (Creat uid perms path) = uid

uid-of (Unlink uid path) = uid

uid-of (Mkdir uid path perms) = uid

uid-of (Rmdir uid path) = uid

uid-of (Readdir uid names path) = uid

consts

path-of :: operation ⇒ path

primrec

path-of (Read uid text path) = path

path-of (Write uid text path) = path

path-of (Chmod uid perms path) = path

path-of (Creat uid perms path) = path

path-of (Unlink uid path) = path

path-of (Mkdir uid perms path) = path

path-of (Rmdir uid path) = path

path-of (Readdir uid names path) = path

Note that we have omitted explicit Open and Close operations, pretending that

10.4. File-system transitions 269

Read and Write would already take care of this behind the scenes. Thus we
have basically treated sequences of real system-calls open–read/write–close as
atomic transactions.
In principle, this simplification could make big a difference in a model with
explicit concurrent processes. On the other hand, on a real Unix system the
exact scheduling of concurrent open and close operations does not directly affect
the success of corresponding read or write. Unix allows several processes to have
files opened at the same time, even for writing [Ritchie and Thompson, 1974].
Certainly, the result from reading the contents later on may be hard to predict,
but the system-calls involved here will succeed unconditionally.

The operational semantics of system calls is now specified via transitions of the
file-system configuration. This is expressed as an inductive relation, although
there is no recursion involved here.

consts

transition :: (file × operation × file) set

syntax

-transition :: file ⇒ operation ⇒ file ⇒ bool

(- −-→ - [90, 1000, 90] 100)

translations

root −x→ root ′
 (root , x , root ′) ∈ transition

inductive transition

intros

read :

access root path uid {Readable} = Some (Val (att , text)) =⇒
root −(Read uid text path)→ root

write:

access root path uid {Writable} = Some (Val (att , text ′)) =⇒
root −(Write uid text path)→ update path (Some (Val (att , text))) root

chmod :

access root path uid {} = Some file =⇒
uid = 0 ∨ uid = owner (attributes file) =⇒
root −(Chmod uid perms path)→ update path

(Some (file (|attributes := attributes file (|others := perms|)|))) root

creat :

path = parent-path @ [name] =⇒
access root parent-path uid {Writable} = Some (Env att parent) =⇒
access root path uid {} = None =⇒
root −(Creat uid perms path)→ update path

(Some (Val ((|owner = uid , others = perms|), []))) root

270 CHAPTER 10. Example: Unix security

unlink :

path = parent-path @ [name] =⇒
access root parent-path uid {Writable} = Some (Env att parent) =⇒
access root path uid {} = Some (Val plain) =⇒
root −(Unlink uid path)→ update path None root

mkdir :

path = parent-path @ [name] =⇒
access root parent-path uid {Writable} = Some (Env att parent) =⇒
access root path uid {} = None =⇒
root −(Mkdir uid perms path)→ update path

(Some (Env (|owner = uid , others = perms|) empty)) root

rmdir :

path = parent-path @ [name] =⇒
access root parent-path uid {Writable} = Some (Env att parent) =⇒
access root path uid {} = Some (Env att ′ empty) =⇒
root −(Rmdir uid path)→ update path None root

readdir :

access root path uid {Readable} = Some (Env att dir) =⇒
names = dom dir =⇒
root −(Readdir uid names path)→ root

The above specification is central to the whole formal development. Any of the
results to be established later on are only meaningful to the outside world if this
transition system provides an adequate model of real Unix systems. This kind
of “reality-check” of a formal model is the well-known problem of validation.
In case of doubt, one may consider to compare our definition with the informal
specifications given in the corresponding Unix man pages, or inspect the sources
of a real implementation such as [Torvalds and others]. Another common way to
gain confidence into our formal model is to run simple simulations (see §10.5.2),
and compare the results with those of experiments performed on a running Unix
system, for example.

10.4.2 Basic properties of single transitions

The transition system root −x→ root ′ defined above determines a unique result
root ′ from given root and x (this holds rather trivially, as there is only one
clause for each operation). This uniqueness statement will simplify our subse-
quent development to some extent, since we only have to reason about a partial
function rather than a general relation.

theorem transition-uniq : root −x→ root ′ =⇒ root −x→ root ′′ =⇒ root ′ = root ′′

proof −
assume root : root −x→ root ′

assume root −x→ root ′′

10.4. File-system transitions 271

thus ?thesis

proof cases

case read

with root show ?thesis by cases auto

next

case write

with root show ?thesis by cases auto

next

case chmod

with root show ?thesis by cases auto

next

case creat

with root show ?thesis by cases auto

next

case unlink

with root show ?thesis by cases auto

next

case mkdir

with root show ?thesis by cases auto

next

case rmdir

with root show ?thesis by cases auto

next

case readdir

with root show ?thesis by cases auto

qed

qed

Apparently, file-system transitions are type-safe in the sense that the result of
transforming an actual directory yields again a directory.

theorem transition-type-safe:

root −x→ root ′ =⇒ ∃ att dir . root = Env att dir =⇒ ∃ att dir . root ′ = Env att dir

proof −
assume tr : root −x→ root ′

assume inv : ∃ att dir . root = Env att dir

show ?thesis

proof (cases path-of x)

case Nil

with tr inv show ?thesis

by cases (auto simp add : access-def split : if-splits)

next

case Cons

from tr obtain opt where

root ′ = root ∨ root ′ = update (path-of x) opt root

by cases auto

272 CHAPTER 10. Example: Unix security

with inv Cons show ?thesis

by (auto simp add : update-eq split : list .splits)

qed

qed

The previous result may be seen as the most basic invariant on the file-system
state that is enforced by any proper Unix kernel implementation. So user pro-
cesses — being bound to the system-call interface — may never mess up a
file-system such that the root becomes a plain file instead of a directory, which
would be a very odd configuration of the file-system indeed.

10.4.3 Iterated transitions

Iterated file-system transitions via finite sequences of system operations are
modeled inductively as follows.

consts

transitions :: (file × operation list × file) set

syntax

-transitions :: file ⇒ operation list ⇒ file ⇒ bool

(- =-⇒ - [90, 1000, 90] 100)

translations

root =xs⇒ root ′
 (root , xs, root ′) ∈ transitions

inductive transitions

intros

nil : root =[]⇒ root

cons: root −x→ root ′ =⇒ root ′ =xs⇒ root ′′ =⇒ root =(x # xs)⇒ root ′′

In a sense, this relation describes the cumulative effect of the sequence of system-
calls issued by a set of running processes over a finite number of run-time steps.

We establish a few basic facts relating iterated transitions with single ones,
according to the recursive structure of lists.

lemma transitions-nil-eq : root =[]⇒ root ′ = (root = root ′)

proof

assume root =[]⇒ root ′

thus root = root ′ by cases simp-all

next

assume root = root ′

thus root =[]⇒ root ′ by (simp only : transitions.nil)

qed

lemma transitions-cons-eq :

root =(x # xs)⇒ root ′′ = (∃ root ′. root −x→ root ′ ∧ root ′ =xs⇒ root ′′)

proof

10.4. File-system transitions 273

assume root =(x # xs)⇒ root ′′

thus ∃ root ′. root −x→ root ′ ∧ root ′ =xs⇒ root ′′

by cases auto

next

assume ∃ root ′. root −x→ root ′ ∧ root ′ =xs⇒ root ′′

thus root =(x # xs)⇒ root ′′

by (blast intro: transitions.cons)

qed

The next two rules show how to “destruct” known transition sequences. Note
that the second one actually relies on the uniqueness property of the basic
transition system (cf. §10.4.2).

lemma transitions-nilD : root =[]⇒ root ′ =⇒ root ′ = root

by (simp add : transitions-nil-eq)

lemma transitions-consD :

root =(x # xs)⇒ root ′′ =⇒ root −x→ root ′ =⇒ root ′ =xs⇒ root ′′

proof −
assume root =(x # xs)⇒ root ′′

then obtain r ′ where r ′: root −x→ r ′ and root ′′: r ′ =xs⇒ root ′′

by cases simp-all

assume root −x→ root ′

with r ′ have r ′ = root ′ by (rule transition-uniq)

with root ′′ show root ′ =xs⇒ root ′′ by simp

qed

The following fact shows how an invariant Q of single transitions with satisfying
P may be transferred to iterated transitions. The proof is rather obvious by
rule induction according to the definition of root =xs⇒ root ′.

lemma transitions-invariant :

(
∧

r x r ′. r −x→ r ′ =⇒ Q r =⇒ P x =⇒ Q r ′) =⇒
root =xs⇒ root ′ =⇒ Q root =⇒ ∀ x ∈ set xs. P x =⇒ Q root ′

proof −
assume r :

∧
r x r ′. r −x→ r ′ =⇒ Q r =⇒ P x =⇒ Q r ′

assume root =xs⇒ root ′

thus Q root =⇒ (∀ x ∈ set xs. P x) =⇒ Q root ′ (is PROP ?P root xs root ′)

proof (induct ?P root xs root ′)

fix root assume Q root

thus Q root .

next

fix root root ′ root ′′ and x xs

assume root ′: root −x→ root ′

assume hyp: PROP ?P root ′ xs root ′′

assume Q : Q root

assume P : ∀ x ∈ set (x # xs). P x

274 CHAPTER 10. Example: Unix security

hence P x by simp

with root ′ Q have Q root ′ by (rule r)

moreover from P have ∀ x ∈ set xs. P x by simp

ultimately show Q root ′′ by (rule hyp)

qed

qed

As a basic application of the previous result, we transfer the type-safety property
(§10.4.2) from single transitions to iterated ones.

theorem transitions-type-safe:
root =xs⇒ root ′ =⇒ ∃ att dir . root = Env att dir =⇒ ∃ att dir . root ′ = Env att dir

proof −
case antecedent
with transition-type-safe show ?thesis
proof (rule transitions-invariant)

show ∀ x ∈ set xs. True by blast
qed

qed

10.5 Executable sequences

An inductively defined relation such as root −x→ root ′ (cf. §10.4.1) has two
main aspects. First of all, the resulting system admits a certain set of transition
rules (introductions) as given in the specification. Secondly, there is a least
fixed-point construction involved, which results in induction (and case-analysis)
rules to eliminate known transitions exhaustively.

Subsequently, we explore our transition system in an experimental manner,
mainly using the introduction rules with basic algebraic properties of the un-
derlying structures. This technique closely resembles that of logic programming
combined with functional evaluation in a very simple manner.
Just as the “closed-world assumption” is left implicit in logic programming, we
do not refer to induction over the whole transition system here. So this is still
positive reasoning only, about possible executions; exhaustive reasoning will be
employed only later on (see §10.6), when we shall demonstrate that certain
behavior is not possible.

10.5.1 Possible transitions

Rather obviously, a list of system operations can be executed within a certain
state if there is a result state reached by an iterated transition.

constdefs

can-exec :: file ⇒ operation list ⇒ bool

can-exec root xs ≡ ∃ root ′. root =xs⇒ root ′

10.5. Executable sequences 275

lemma can-exec-nil : can-exec root []

by (unfold can-exec-def) (blast intro: transitions.intros)

lemma can-exec-cons:

root −x→ root ′ =⇒ can-exec root ′ xs =⇒ can-exec root (x # xs)

by (unfold can-exec-def) (blast intro: transitions.intros)

In case that we already know that a sequence can be executed we may destruct
it backwards into individual transitions.

lemma can-exec-snocD :
∧

root . can-exec root (xs @ [y])
=⇒ ∃ root ′ root ′′. root =xs⇒ root ′ ∧ root ′ −y→ root ′′

(is PROP ?P xs is
∧

root . ?A root xs =⇒ ?C root xs)
proof (induct xs)

fix root
{

assume ?A root []
thus ?C root []

by (simp add : can-exec-def transitions-nil-eq transitions-cons-eq)
next

fix x xs
assume hyp: PROP ?P xs
assume asm: ?A root (x # xs)
show ?C root (x # xs)
proof −

from asm obtain r root ′′ where x : root −x→ r and
xs-y : r =(xs @ [y])⇒ root ′′

by (auto simp add : can-exec-def transitions-nil-eq transitions-cons-eq)
from xs-y hyp obtain root ′ r ′ where xs: r =xs⇒ root ′ and y : root ′ −y→ r ′

by (auto simp add : can-exec-def)
from x xs have root =(x # xs)⇒ root ′

by (rule transitions.cons)
with y show ?thesis by blast

qed
}

qed

10.5.2 Example executions

We are ready to perform a few experiments within our formal model of Unix
system-calls. The common technique is to alternate introduction rules of the
transition system (§10.4), and steps to solve any emerging side conditions by
using algebraic properties of the underlying file-system structures (§10.3). Note
that this does not constitute “real proof”, but essentially performs symbolic
evaluation within the logical environment.

lemmas eval = access-def init-def

276 CHAPTER 10. Example: Unix security

theorem u ∈ users =⇒ can-exec (init users)

[Mkdir u perms [u, name]]

apply (rule can-exec-cons)

— back-chain can-exec (of Cons)

apply (rule mkdir)

— back-chain Mkdir

apply (force simp add : eval)+

— solve preconditions of Mkdir

apply (simp add : eval)

— peek at normalized result (optional)

1. u ∈ users =⇒
can-exec
(Env (|owner = 0, others = {Readable}|)

((λu. if u ∈ users
then Some (Env (|owner = u, others = {Readable}|) empty)
else None)

(u 7→Env (|owner = u, others = {Readable}|)
(empty(name 7→Env (|owner = u, others = perms|) empty)))))

[]

apply (rule can-exec-nil)

— back-chain can-exec (of Nil)

done

By inspecting the result shown just before the final step above, we may gain
confidence that our specification of Unix system-calls actually makes sense. Fur-
ther common errors are usually exhibited when preconditions of transition rules
fail unexpectedly.

Here are some additional experiments, using the same techniques as before.

theorem u ∈ users =⇒ can-exec (init users)

[Creat u perms [u, name],

Unlink u [u, name]]

apply (rule can-exec-cons)

apply (rule creat)

apply (force simp add : eval)+

apply (simp add : eval)

apply (rule can-exec-cons)

apply (rule unlink)

apply (force simp add : eval)+

apply (simp add : eval)

peek at result:

1. u ∈ users =⇒
can-exec

10.5. Executable sequences 277

(Env (|owner = 0, others = {Readable}|)
((λu. if u ∈ users

then Some (Env (|owner = u, others = {Readable}|) empty)
else None)

(u 7→Env (|owner = u, others = {Readable}|) empty)))
[]

apply (rule can-exec-nil)

done

theorem u ∈ users =⇒ Writable ∈ perms1 =⇒
Readable ∈ perms2 =⇒ name3 6= name4 =⇒
can-exec (init users)

[Mkdir u perms1 [u, name1],

Mkdir u ′ perms2 [u, name1, name2],

Creat u ′ perms3 [u, name1, name2, name3],

Creat u ′ perms3 [u, name1, name2, name4],

Readdir u {name3, name4} [u, name1, name2]]

apply (rule can-exec-cons, rule transition.intros,

(force simp add : eval)+, (simp add : eval)?)+

peek at result:

1. u ∈ users =⇒
Writable ∈ perms1 =⇒
Readable ∈ perms2 =⇒
name3 6= name4 =⇒
can-exec
(Env (|owner = 0, others = {Readable}|)

((λu. if u ∈ users
then Some (Env (|owner = u, others = {Readable}|) empty)
else None)

(u 7→Env (|owner = u, others = {Readable}|)
(empty(name1 7→
Env (|owner = u, others = perms1|)
(empty(name2 7→
Env (|owner = u ′, others = perms2|)
(empty(name3 7→Val ((|owner = u ′, others = perms3|), []))
(name4 7→Val ((|owner = u ′, others = perms3|), []))))))))))

[]

apply (rule can-exec-nil)

done

theorem u ∈ users =⇒ Writable ∈ perms1 =⇒ Readable ∈ perms3 =⇒
can-exec (init users)

[Mkdir u perms1 [u, name1],

Mkdir u ′ perms2 [u, name1, name2],

278 CHAPTER 10. Example: Unix security

Creat u ′ perms3 [u, name1, name2, name3],

Write u ′ ′′foo ′′ [u, name1, name2, name3],

Read u ′′foo ′′ [u, name1, name2, name3]]

apply (rule can-exec-cons, rule transition.intros,

(force simp add : eval)+, (simp add : eval)?)+

peek at result:

1. u ∈ users =⇒
Writable ∈ perms1 =⇒
Readable ∈ perms3 =⇒
can-exec
(Env (|owner = 0, others = {Readable}|)

((λu. if u ∈ users
then Some (Env (|owner = u, others = {Readable}|) empty)
else None)

(u 7→Env (|owner = u, others = {Readable}|)
(empty(name1 7→
Env (|owner = u, others = perms1|)
(empty(name2 7→
Env (|owner = u ′, others = perms2|)
(empty(name3 7→
Val ((|owner = u ′, others = perms3|), ′′foo ′′))))))))))

[]

apply (rule can-exec-nil)
done

10.6 Odd effects — treated formally

We are ready to give a completely formal treatment of the odd situation dis-
cussed in the introduction (§10.2): the file-system may reach a state where a
user is unable to remove his very own directory, because it is still populated by
items placed there by another user in an uncouth manner.

10.6.1 The general procedure

The following theorem expresses the general procedure we are following to
achieve the main result.

theorem general-procedure:

(
∧

r r ′. Q r =⇒ r −y→ r ′ =⇒ False) =⇒
(
∧

root . init users =bs⇒ root =⇒ Q root) =⇒
(
∧

r x r ′. r −x→ r ′ =⇒ Q r =⇒ P x =⇒ Q r ′) =⇒
init users =bs⇒ root =⇒ ¬ (∃ xs. (∀ x ∈ set xs. P x) ∧ can-exec root (xs @ [y]))

proof −
assume cannot-y :

∧
r r ′. Q r =⇒ r −y→ r ′ =⇒ False

10.6. Odd effects — treated formally 279

assume init-inv :
∧

root . init users =bs⇒ root =⇒ Q root

assume preserve-inv :
∧

r x r ′. r −x→ r ′ =⇒ Q r =⇒ P x =⇒ Q r ′

assume init-result : init users =bs⇒ root

{
fix xs

assume Ps: ∀ x ∈ set xs. P x

assume can-exec: can-exec root (xs @ [y])

then obtain root ′ root ′′ where

xs: root =xs⇒ root ′ and y : root ′ −y→ root ′′

by (blast dest : can-exec-snocD)

from init-result have Q root by (rule init-inv)

from preserve-inv xs this Ps have Q root ′

by (rule transitions-invariant)

from this y have False by (rule cannot-y)

}
thus ?thesis by blast

qed

Here P x refers to the restriction on file-system operations that are admitted
after having reached the critical configuration; according to the problem speci-
fication this will become uid-of x = user1 later on. Furthermore, y refers to the
operations we claim to be impossible to perform afterwards; we will be taking
Rmdir. Moreover, Q is a suitable (auxiliary) invariant over the file-system (after
reaching the critical configuration); choosing Q adequately is very important to
make the proof work (see §10.6.3).

10.6.2 The particular setup

We introduce a few global declarations and axioms to describe our particular
setup considered here. Thus we avoid excessive use of local parameters in the
subsequent development.

consts

users :: uid set

user1 :: uid

user2 :: uid

name1 :: name

name2 :: name

name3 :: name

perms1 :: perms

perms2 :: perms

axioms

user1-known: user1 ∈ users

user1-not-root : user1 6= 0

users-neq : user1 6= user2

280 CHAPTER 10. Example: Unix security

perms1-writable: Writable ∈ perms1

perms2-not-writable: Writable /∈ perms2

lemmas setup =

user1-known user1-not-root users-neq

perms1-writable perms2-not-writable

The bogus operations are the ones that lead into the uncouth situation described
before; bogus-path is the key position within the file-system where things go awry.

constdefs
bogus :: operation list
bogus ≡
[Mkdir user1 perms1 [user1, name1],
Mkdir user2 perms2 [user1, name1, name2],
Creat user2 perms2 [user1, name1, name2, name3]]

bogus-path :: path
bogus-path ≡ [user1, name1, name2]

10.6.3 Invariance lemmas

The following invariant over the root file-system describes the bogus situation
in an abstract manner: located at a certain path (within the home directory of
user1) is a non-empty directory that is neither owned and nor writable by user1.

constdefs

invariant :: file ⇒ path ⇒ bool

invariant root path ≡
(∃ att dir .

access root path user1 {} = Some (Env att dir) ∧ dir 6= empty ∧
user1 6= owner att ∧
access root path user1 {Writable} = None)

Following the general procedure (cf. §10.6.1), we will now establish the three
key lemmas required to yield the final result.

1. The invariant is sufficiently strong to entail the pathological case that
user1 is unable to remove the (owned) directory at [user1, name1].

2. The invariant does hold after having executed the bogus list of operations
(starting with an initial file-system configuration).

3. The invariant is preserved by any file-system operation performed by user1

alone, without any help by other users.

Since the invariant appears both as assumption and conclusion in the course of
reasoning, its formulation is rather critical for the whole development to work

10.6. Odd effects — treated formally 281

out properly. In particular, the third step is very sensitive to the invariant being
either too strong or too weak. Moreover, the statement has to be sufficiently
abstract, lest the proof become cluttered by confusing detail.

The first two lemmas are straight-forward, we just have to inspect rather special
cases.

lemma cannot-rmdir : invariant root bogus-path =⇒
root −(Rmdir user1 [user1, name1])→ root ′ =⇒ False

proof −
assume invariant root bogus-path

then obtain file where access root bogus-path user1 {} = Some file

by (unfold invariant-def) blast

moreover

assume root −(Rmdir user1 [user1, name1])→ root ′

then obtain att where

access root [user1, name1] user1 {} = Some (Env att empty)

by cases auto

hence access root ([user1, name1] @ [name2]) user1 {} = None

by (simp only : access-empty-lookup lookup-append-some) simp

ultimately show False by (simp add : bogus-path-def)

qed

Subsequently, we use again the same techniques for symbolic evaluation as en-
countered in §10.5.2.

lemma init-invariant : init users =bogus⇒ root =⇒ invariant root bogus-path

proof −
note eval = setup access-def init-def

case antecedent thus ?thesis

apply (unfold bogus-def bogus-path-def)

apply (drule transitions-consD , rule transition.intros,

(force simp add : eval)+, (simp add : eval)?)+

— evaluate all operations

apply (drule transitions-nilD)

— reach final result

apply (simp add : invariant-def eval)

— check the invariant

done

qed

Finally we are left with the main effort to show that the “bogosity” invariant
is preserved by any file-system operation root −x→ root ′ performed by user1

alone. Note that this holds for any path given, the particular bogus-path is not
required here.

lemma preserve-invariant : root −x→ root ′ =⇒
invariant root path =⇒ uid-of x = user1 =⇒ invariant root ′ path

282 CHAPTER 10. Example: Unix security

proof −
assume tr : root −x→ root ′

assume inv : invariant root path
assume uid : uid-of x = user1

from inv obtain att dir where
inv1: access root path user1 {} = Some (Env att dir) and
inv2: dir 6= empty and
inv3: user1 6= owner att and
inv4: access root path user1 {Writable} = None

by (auto simp add : invariant-def)

from inv1 have lookup: lookup root path = Some (Env att dir)
by (simp only : access-empty-lookup)

from inv1 inv3 inv4 and user1-not-root
have not-writable: Writable /∈ others att

by (auto simp add : access-def split : option.splits if-splits)

show ?thesis
proof cases

assume root ′ = root
with inv show invariant root ′ path by (simp only :)

next
assume changed : root ′ 6= root
with tr obtain opt where root ′: root ′ = update (path-of x) opt root

by cases auto
show ?thesis
proof (rule prefix-cases)

assume path-of x ‖ path
with inv root ′

have
∧

perms. access root ′ path user1 perms = access root path user1 perms
by (simp only : access-update-other)

with inv show invariant root ′ path
by (simp only : invariant-def)

next
assume path-of x ≤ path
then obtain ys where path: path = path-of x @ ys ..

show ?thesis
proof (cases ys)

assume ys = []
with tr uid inv2 inv3 lookup changed path and user1-not-root
have False

by cases (auto simp add : access-empty-lookup dest : access-some-lookup)
thus ?thesis ..

next
fix z zs assume ys: ys = z # zs
have lookup root ′ path = lookup root path
proof −

10.6. Odd effects — treated formally 283

from inv2 lookup path ys
have look : lookup root (path-of x @ z # zs) = Some (Env att dir)

by (simp only :)
then obtain att ′ dir ′ file ′ where

look ′: lookup root (path-of x) = Some (Env att ′ dir ′) and
dir ′: dir ′ z = Some file ′ and
file ′: lookup file ′ zs = Some (Env att dir)

by (blast dest : lookup-some-upper)

from tr uid changed look ′ dir ′ obtain att ′′ where
look ′′: lookup root ′ (path-of x) = Some (Env att ′′ dir ′)

by cases (auto simp add : access-empty-lookup lookup-update-some
dest : access-some-lookup)

with dir ′ file ′ have lookup root ′ (path-of x @ z # zs) =
Some (Env att dir)

by (simp add : lookup-append-some)
with look path ys show ?thesis

by simp
qed
with inv show invariant root ′ path

by (simp only : invariant-def access-def)
qed

next
assume path < path-of x
then obtain y ys where path: path-of x = path @ y # ys ..

obtain dir ′ where
lookup ′: lookup root ′ path = Some (Env att dir ′) and
inv2

′: dir ′ 6= empty
proof (cases ys)

assume ys = []
with path have parent : path-of x = path @ [y] by simp
with tr uid inv4 changed obtain file where

root ′ = update (path-of x) (Some file) root
by cases auto

with lookup parent have lookup root ′ path = Some (Env att (dir(y 7→file)))
by (simp only : update-append-some update-cons-nil-env)

moreover have dir(y 7→file) 6= empty by simp
ultimately show ?thesis ..

next
fix z zs assume ys: ys = z # zs
with lookup root ′ path
have lookup root ′ path = Some (update (y # ys) opt (Env att dir))

by (simp only : update-append-some)
also obtain file ′ where

update (y # ys) opt (Env att dir) = Env att (dir(y 7→file ′))
proof −

have dir y 6= None
proof −

have dir y = lookup (Env att dir) [y]

284 CHAPTER 10. Example: Unix security

by (simp split : option.splits)
also from lookup have . . . = lookup root (path @ [y])

by (simp only : lookup-append-some)
also have . . . 6= None
proof −

from ys obtain us u where rev-ys: ys = us @ [u]
by (cases ys rule: rev-cases) auto

with tr path
have lookup root ((path @ [y]) @ (us @ [u])) 6= None ∨

lookup root ((path @ [y]) @ us) 6= None
by cases (auto dest : access-some-lookup)

thus ?thesis by (blast dest !: lookup-some-append)
qed
finally show ?thesis .

qed
with ys show ?thesis

by (insert that , auto simp add : update-cons-cons-env)
qed
also have dir(y 7→file ′) 6= empty by simp
ultimately show ?thesis ..

qed

from lookup ′ have inv1
′: access root ′ path user1 {} = Some (Env att dir ′)

by (simp only : access-empty-lookup)

from inv3 lookup ′ and not-writable user1-not-root
have access root ′ path user1 {Writable} = None

by (simp add : access-def)
with inv1

′ inv2
′ inv3 show ?thesis by (unfold invariant-def) blast

qed
qed

qed

10.6.4 Putting it all together

The main result is now imminent, just by composing the three invariance lemmas
(§10.6.3) according the overall procedure (§10.6.1).

theorem main:
init users =bogus⇒ root =⇒
¬ (∃ xs. (∀ x ∈ set xs. uid-of x = user1) ∧

can-exec root (xs @ [Rmdir user1 [user1, name1]]))
proof −

case antecedent
with cannot-rmdir init-invariant preserve-invariant
show ?thesis by (rule general-procedure)

qed

end

10.7. Discussion 285

10.7 Discussion

10.7.1 Isar techniques

The present Isabelle/Isar application routinely uses advanced techniques dis-
cussed in chapter 5 and chapter 6. We reconsider a number of notable instances
of advanced proof patterns, as encountered in the present body of text.

Structured treatment of numerous cases

The proof of theorem transition-uniq (§10.4.2) proceeds by canonical case-
analysis over two independent transitions root −x→ root ′ and root −x→ root ′′.
Thus we essentially arrive at a quadratic number of sub-problems, stemming
from the individual inductive cases of each transition.
This nested case-analysis is arranged in our proof text by first performing an
outer backwards decomposition via “proof cases”, and laying out the resulting
8 sub-problems using symbolic case names and term abbreviations (cf. §5.4);
each individual sub-problem acquires additional premises stemming from the
original inductive definition (§10.4.1), which are included in another case anal-
ysis: in “by cases auto” the initial cases step splits into 8 new sub-problems
(via elimination of the root fact), while the terminal auto solves all of these
uniformly (using the remaining facts of the previous case).

theorem transition-uniq : root −x→ root ′ =⇒ root −x→ root ′′ =⇒ root ′ = root ′′

proof −
assume root : root −x→ root ′

assume root −x→ root ′′

thus ?thesis

proof cases

case read

with root show ?thesis by cases auto

next

case write

with root show ?thesis by cases auto

next
...

Apparently, we have been able to express this pattern of reasoning quite suc-
cinctly as an Isar text, covering the overall structure of the proof, and the main
statements and facts with an indication of their use in specific proof steps. Due
to the general compositional nature of Isar proofs, this scheme may be easily
refined to work out further details of sub-proofs as appropriate (e.g. for special
treatment of less obvious cases in more complex applications).

In contrast, we could certainly produce an even shorter script that achieves
mostly the same operational behavior, at the cost of the usual disadvantages

286 CHAPTER 10. Example: Unix security

of unstructured proof techniques. In particular, modular treatment of sub-
problems would be lost; thus detailed analysis of the individual cases and de-
bugging of failed intermediate steps quickly becomes a serious effort.

theorem transition-uniq : root −x→ root ′ =⇒ root −x→ root ′′ =⇒ root ′ = root ′′

by (erule transition.cases) (erule transition.cases, auto)+

Abstract covering of cases

The proof of theorem transition-type-safe (§10.4.2) exhibits a different view
on case-analysis. Rather than following the superficial structure of cases from
the original inductive definition of root −x→ root ′ (§10.4.1) naively, we first
discriminate against the syntactic structure of the path-of x parameter and then
inspect the transition.

theorem transition-type-safe:

root −x→ root ′ =⇒ ∃ att dir . root = Env att dir =⇒ ∃ att dir . root ′ = Env att dir

proof −
assume tr : root −x→ root ′

assume inv : ∃ att dir . root = Env att dir

show ?thesis

proof (cases path-of x)

At this point we achieve separate cases of Nil and Cons; both are eventually
finished in a similar manner, by performing the inductive case-analysis that has
been deferred so far, and solving the remaining problems automatically.

case Nil

with tr inv show ?thesis

by cases (auto simp add : access-def split : if-splits)

next

case Cons

from tr obtain opt where

root ′ = root ∨ root ′ = update (path-of x) opt root

by cases auto

with inv Cons show ?thesis

by (auto simp add : update-eq split : list .splits)

While the Nil case bas been mostly trivial, Cons requires some further care; the
relevant observation from the inductive cases is exhibited via an intermediate
obtain statement (cf. §5.3) in an abstract manner. Note that introduction of
new existential parameters is quite typical for this kind of application, otherwise
plain have would have been sufficient here.

qed

qed

Apparently, this pattern of initial discrimination plus abstract covering of several
cases via an intermediate fact of obtain achieves a substantial reduction of the
volume of proof text; we did not need to spell out 8 separate cases again. Even

10.7. Discussion 287

more, the abstract characterization of the particular situation encountered here
contributes to the general understanding of the main point of the proof.
In contrast, naive use of nested case-splitting from the very start could easily
lead into a large number of sub-problems, which need to be all accommodated
by separate proofs. In unstructured scripts such situations would be typically
covered by heavy use of tactic combinators to operate on many similar goals
simultaneously, with extensive tweaking of automated methods to work with
these particular sub-problems uniformly. Thus we would not only lose structural
clarity, but also require additional efforts in mastering automated tools (usually
requiring more proof-processing time, too).

Suitable abstractions of cases need to be provided by the writer of Isar proof
texts, of course. On the other hand, once that the basic setup has been given, it
is usually quite easy to explore possible intermediate results interactively. This
would typically proceed by inspecting the remaining dynamic proof state, after
having issued cases and auto method invocations separately (e.g. replacing by
proofs by a few apply commands temporarily).
Certainly, this phase of interactive exploration is eventually finished by turning
the dynamic evolution of proof problems into static text. In the present exam-
ple a large number of accidental sub-problems have been captured by simple
statements within the logic, so this technique is somewhat dependent on the
particular formalization of the problem and the expressive power of the under-
lying language. The simply-typed set-theory of Isabelle/HOL (cf. chapter 7)
should reach quite far in practice, although not being unlimited.

Animation of logical objects

In the example executions of §10.5.2 we have used the existing inference engine
of Isabelle to “animate” the specification of the set of file-system transitions
(§10.4). The basic idea is to treat the rules from the inductive definition like
a Prolog program, and solve emerging side-conditions by means of functional
simplification, as involved in advanced Isabelle proof methods (cf. §7.3).

theorem u ∈ users =⇒ can-exec (init users)

[Mkdir u perms [u, name]]

apply (rule can-exec-cons)

apply (rule mkdir)

apply (force simp add : eval)+

apply (simp add : eval)

apply (rule can-exec-nil)

done

Certainly, this pattern is quite far from systematic combinations of logical and
functional programming techniques; the main control is left to the user by giving
a suitable operational proof script.
Due to its footing on basic inference tools of Isabelle, this kind of experimen-

288 CHAPTER 10. Example: Unix security

tal evaluation of specifications is not particularly fast. The present example
takes about 0.5 s on a reasonably fast machine (see also §10.7.2). On the other
hand, it is nice to have simple tools for experimentation available within the
system, without demanding further efforts to maintain a link to real program-
ming language environments. The latter would usually involve slightly awkward
restrictions to strictly executable specifications. Note that the present specifi-
cation includes some infinitary elements, such as unlimited sets of users and
unrestricted mappings from names to sub-directories.

Despite being based on real logical inferences inside, there is no point to present
this kind of symbolic evaluation as an actual Isar proof text. The proof per-
formed at the primitive level is indeed rather accidental. Apparently, the im-
proper proof commands apply and done (cf. §3.2.1) may have their proper use
as well, even within structured formal developments of Isabelle/Isar.

Global declarations

On entering the concrete description of the “odd situation”, we have introduced
several declarations of consts and axioms at the global theory level (§10.6.2).

consts

users :: uid set

user1 :: uid

user2 :: uid

name1 :: name

name2 :: name

name3 :: name

perms1 :: perms

perms2 :: perms

axioms

user1-known: user1 ∈ users

user1-not-root : user1 6= 0

users-neq : user1 6= user2

perms1-writable: Writable ∈ perms1

perms2-not-writable: Writable /∈ perms2

This fixes a particular context for any results to be issued later on. As a purely
axiomatic extension this certainly violates the HOL paradigm of definitionality!
On the other hand, it is easy to see that the axioms are indeed satisfiable, so
this extension turns out to be a conservative one (cf. §2.3), although this fact
has only been established outside of the formal system.

The main intention of global declarations like this is to keep subsequent state-
ments free from additional parameters and assumptions. So we actually did
not mean to introduce an existential context, but a universal one. While it
is usually accepted to fall back on plain axioms in such situations, we would

10.7. Discussion 289

be slightly more comfortable with an explicit mechanism to manage separate
contexts at the theory level succinctly.
The concept of locales [Kammüller et al., 1999] achieves exactly this for clas-
sic Isabelle, similar to the concept of “sections” in Coq [Barras et al., 1999].
Unfortunately, locales have not yet been ported to the Isabelle/Isar theory for-
mat, although this would be quite trivial. So we would morally consider the
above consts and axioms as a canonical application of locales, instead of a raw
axiomatic theory extension.

Local declarations in proof scripts

In the present example, we have used a few proof scripts to achieve symbolic
evaluation of concrete representations of Unix file-system structures. Despite
being inherently unstructured, proof scripts occasionally demand local declara-
tions, usually to tune the behavior of proof methods to be used later on.
Due to the compositional nature of the Isar proof language, we may easily wrap
up scripts into (degenerate) proof structures, in order to provide a local context
for private declarations. The evaluation script for lemma init-invariant (§10.6.3)
uses the automatic bindings of case antecedent and term ?thesis to recommence
the initial rule statement locally, without duplicating any text.

lemma init-invariant : init users =bogus⇒ root =⇒ invariant root bogus-path

proof −
note eval = setup access-def init-def

case antecedent thus ?thesis
...

Local declarations could be just anything; here we have merely used note to
bind facts locally. Note that in traditional Isabelle tactic scripts, such auxiliary
items are usually put into the global theory context.

Advanced existential reasoning

The proof of the main invariance lemma preserve-invariant (§10.6.3) exhibits
a number of interesting techniques, including a non-trivial pattern of reasoning
along the lines of ∃ x . P x =⇒ ∃ x . Q x. Existential quantification is actually
hidden in the definition of invariant root path; using the obtain element of §5.3
we manage to complete the proof without ever mentioning these quantifiers
explicitly.

lemma preserve-invariant : root −x→ root ′ =⇒
invariant root path =⇒ uid-of x = user1 =⇒ invariant root ′ path

proof −
assume tr : root −x→ root ′

assume inv : invariant root path

assume uid : uid-of x = user1

290 CHAPTER 10. Example: Unix security

Initially, we eliminate the existential content of invariant root path, exhibiting
abstract witness elements directly to the proof text; we also decompose that
inherently conjunctive statement into several individual facts (cf. §5.3).

from inv obtain att dir where

inv1: access root path user1 {} = Some (Env att dir) and

inv2: dir 6= empty and

inv3: user1 6= owner att and

inv4: access root path user1 {Writable} = None

by (auto simp add : invariant-def)

The main proof now proceeds by producing “primed” versions of inv1, . . . , inv4

to accommodate the ultimate introduction of invariant root ′ path. Note that
inv3

′ coincides with inv3, while inv4
′ is not labeled explicitly since it directly

emerges near the very end of the proof.
...

from inv3 lookup ′ and not-writable user1-not-root

have access root ′ path user1 {Writable} = None

by (simp add : access-def)

with inv1
′ inv2

′ inv3 show ?thesis by (unfold invariant-def) blast

From these facts about explicit witness elements, we easily get the main re-
sult by having Isabelle’s tableau prover blast (cf. §7.3) work out the details of
conjunction and existential introduction.

qed
qed

qed

Abstraction by explicit statements

Another very common technique encountered in the proof of preserve-invariant
(§10.6.3) is that of reducing the (conceptual and technical) complexity of the
proof by inserting abstractions via explicit intermediate statements. This is cer-
tainly a rather obvious thing to do in any serious proof; albeit the established
practice of unstructured tactical proving tends to proceed in one way only,
decomposing statements into an increasingly large amount of “simpler” propo-
sitions emitted dynamically. By including appropriate abstract statements, the
writer of Isar proof texts is enabled to keep the overall complexity under control.
We shall indicate a few notable instances of simplifications achieved by some
additional Isar proof structure used together with suitable local facts.

lemma preserve-invariant : root −x→ root ′ =⇒
invariant root path =⇒ uid-of x = user1 =⇒ invariant root ′ path

proof −

...

10.7. Discussion 291

show ?thesis

proof cases

At this point we discriminate against root ′ = root. The former case achieves the
main result directly. The latter case provides a useful additional assumption of
changed : root ′ 6= root, to be used immediately to obtain an abstract view on the
inductive cases of tr : root −x→ root ′; several further occurrences of changed
are encountered later on.

assume root ′ = root

with inv show invariant root ′ path by (simp only :)

next

assume changed : root ′ 6= root

with tr obtain opt where root ′: root ′ = update (path-of x) opt root

by cases auto

...
Now we are about to establish the resulting invariant in a fairly trivial case, with
equal access to the current path by arbitrary permissions. Claiming a local rule
statement with universal parameter perms, we spare us to consider the concrete
instances of {} and {Writable} separately.

have
∧

perms. access root ′ path user1 perms = access root path user1 perms

by (simp only : access-update-other)

with inv show invariant root ′ path

by (simp only : invariant-def)

...
Below we provide another view on the inductive cases of the fact tr : root −x→
root ′. Due to the specific situation, plain have of a disjunctive statement is
sufficient, so this is actually an example where no existential parameters are to
be obtained.

with tr path
have lookup root ((path @ [y]) @ (us @ [u])) 6= None ∨

lookup root ((path @ [y]) @ us) 6= None
by cases (auto dest : access-some-lookup)

...

10.7.2 Efficiency of Isabelle/Isar proof processing

Resource requirements of Isar proof processing have not been discussed so far,
because this is basically not an issue for the internal bookkeeping of the Isar/VM
interpreter (§3.2.3). Operations encountered here are performed quickly in prac-
tical applications, despite the theoretical complexity of higher-order unification
(e.g. [Paulson, 1989]) involved in some basic proof steps of Isar (e.g. qed of a
claim issued by show).

292 CHAPTER 10. Example: Unix security

The run time of basic Isabelle/Isar applications, such as those of chapter 4,
chapter 8, chapter 9, is usually limited to a few seconds for a whole theory.
In interactive development, the user agent process [Proof General] typically
requires slightly more time to manage the source buffer and display of prover
output than the main Isabelle process.

In more complex applications (like the present one) a considerable amount of run
time is spent in terminal proof steps involving automated methods, such as blast,
auto, force (cf. §7.3). Further resources are required by advanced definitions
like inductive and datatype (cf. §7.2.1). Consequently, the processing time of
theories may approach the range of minutes instead of mere seconds.
In order to give a more precise account of Isabelle/Isar run time encountered in
reality, we fix the following platform: AMD K7 Thunderbird CPU (900 MHz),
256 MB main memory (133 MHz), Linux 2.4.0 kernel, Poly/ML 4.1 compiler
and run time system, and Isabelle99-2. All timings refer to “clean” Isabelle
proof processing, without the quick-and-dirty mode that might get used to skip
a number of internal proofs, especially those of advanced definitional packages
[Berghofer and Wenzel, 1999].

An Isabelle session consists of a number of theories that are loaded in addition to
the main HOL image, which already contains a collection of many basic concepts
(cf. chapter 7). Our Unix session includes two additional theories from [Bauer
et al., 2001]. The overall run times are as follows.

List-Prefix 1.5 s
Nested-Environment 4.5 s
Unix 33.5 s

As long as theories from the library are static, the additional overhead of loading
on demand does not really matter; such theories need to be loaded at most
once during an interactive session. On the other hand, advanced applications
typically consist of a number of interdependent theories in their own right.
During development, the user needs to switch back and forth between different
parts of that DAG structure, usually demanding frequent reloading of individual
theory nodes. In fact, theory Nested-Environment started as a genuine part of
the Unix session, but was moved into the generic library later on.
In any case, the Isabelle/Isar system automatically takes care to reload changed
theories as required, and also ensures a consistent view on sources managed by
the user agent [Proof General]. On the other hand, there is no specific support
to avoid costly replays of individual proofs that happen to be independent of
recent changes. Once that the processing time of theory nodes gets beyond a
few seconds, this situation easily becomes a hindrance in development of large
applications. See also the related discussion of the “Fundamental Theorem of
Algebra” project [Geuvers et al., 2000] performed with Coq [Barras et al., 1999].
Thus the size and complexity of applications has its natural limits in the per-
ceived performance of proof processing, both in batch mode and interactive
development. The present Unix example is still considerably below the level of

10.7. Discussion 293

any serious concerns, though.

We now focus on individual proofs within a single theory, namely that of Unix.
A substantial amount of run time is actually spent in the 6 scripts of symbolic
evaluation alone (examples 1–4 in §10.5.2, as well as lemma init-invariant in
§10.6.3).

evaluation example #1 0.42 s
evaluation example #2 0.93 s
evaluation example #3 3.84 s
evaluation example #4 3.35 s
lemma init-invariant 2.37 s

Enormous run times for seemingly small problems are usually caused by rela-
tively large goal states that need to be treated by simplification, involving a
multitude of different cases that stem from the syntactic structure of datatype
elements. The Isabelle simplifier appears to be particularly slow in conjunc-
tion with this particular kind of case-splitting. In Coq [Barras et al., 1999]
the highly-tuned builtin notion of βδι-reduction should perform slightly bet-
ter; although Coq has a number of other performance issues beyond symbolic
evaluation (cf. the experience reported in [Geuvers et al., 2000]).

Most of actual Isar proof texts encountered in theory Unix are fairly small, with
almost negligible resource requirements each; they add up to a few seconds in to-
tal, apart from the large proof of lemma preserve-invariant which requires 7.04 s
itself. As expected, a substantial part of that time is spent in a few terminal
proof steps involving automated proof methods; we indicate those contributing
more than 0.5 s below.

lemma preserve-invariant : root −x→ root ′ =⇒
invariant root path =⇒ uid-of x = user1 =⇒ invariant root ′ path

proof −

...

with tr obtain opt where root ′: root ′ = update (path-of x) opt root

by cases auto — (1)

...

with tr uid inv2 inv3 lookup changed path and user1-not-root

have False

by cases (auto simp add : access-empty-lookup dest : access-some-lookup)

— (2)

...

from tr uid changed look ′ dir ′ obtain att ′′ where

look ′′: lookup root ′ (path-of x) = Some (Env att ′′ dir ′)

294 CHAPTER 10. Example: Unix security

by cases (auto simp add : access-empty-lookup lookup-update-some

dest : access-some-lookup) — (3)

...

with tr uid inv4 changed obtain file where

root ′ = update (path-of x) (Some file) root

by cases auto — (4)

...

with tr path

have lookup root ((path @ [y]) @ (us @ [u])) 6= None ∨
lookup root ((path @ [y]) @ us) 6= None

by cases (auto dest : access-some-lookup) — (5)

...

qed

We get the following distribution of run time for lemma preserve-invariant.

by step #1 0.51 s
by step #2 1.22 s
by step #3 1.56 s
by step #4 1.14 s
by step #5 1.15 s
remaining 146 commands 1.46 s
total 7.04 s

The proof obligations encountered in those 5 “hot-spots” indicated above are
all structurally quite similar: after an initial split into the 8 inductive cases
stemming from the file-system transition relation, the remaining sub-problems
are solved via auto (cf. §7.3), which involves simplification and case-splitting
over the syntactic structure of datatype elements. The latter proof problems
are close to the rather slow symbolic evaluations encountered before.

Nevertheless, the overall run time behavior of the Isar proof text is fairly good.
As a more detailed analysis of the remaining 1.46 s above reveals, there is virtu-
ally no penalty for the overhead of structured proof processing via the Isar/VM
interpreter (cf. §3.2.3); the overall run time resources are almost completely
available to the primitive inference engine below the Isar level.
This is essentially the same goal that any viable operating-system design would
strive to achieve: any additional structures and policies required to provide
high-level abstractions on top primitive system resources must not use up any
substantial portion of these resources themselves. For example, a good operating
system would typically require only 1% of CPU time for internal bookkeeping,
while 99% are available to run user-space processes. Isar proof processing we

10.7. Discussion 295

achieves a similar ratio; most of the run-time resources are left to primitive steps
performed inside advanced proof methods.

Even more, the overall performance of processing well-structured Isar proof texts
is usually better than that of unstructured Isabelle proof scripts. Typical tactic
scripts consist of a large number of method invocations, operating on a single
(mostly unstructured) goal state; existing subgoals get broken down to simpler
(but larger) ones, to be solved eventually; new goals emerge by inheriting the
context of previous ones. As a consequence, goal states arising from many
individual tactic applications tend to consist of a lot of redundant information
accumulated over time. Advanced proof tools need to take care of this ballast,
even though most if it does not contribute to the result to be achieved.
In contrast, nicely structured Isar proof texts usually state a number of local
problems that may be tackled by automated tools in isolation, indicating only
those facts that are apt to contribute to the problem at hand (cf. the issue of
“relevance of facts” in §7.5.2). Thus the individual proof obligations arising from
the text are typically much smaller than those emerging from tactic scripts. This
can make a big difference for heavily automated proof tools, such as Isabelle’s
auto or force (§7.3).
The problem of redundant local facts is recognized in the tradition of Isabelle
tactic scripts as well; there are a number of operations to tune a goal state by
removing unwanted premises. This additional tweaking is unnecessary in proper
Isar texts, of course. Here one would just refrain from including unwanted
facts in terminal proof steps in the first place, e.g. by restricting from or with
specifications to what is really required. Thus we may gain both efficiency of
proof checking and clarity of the resulting text, since irrelevant facts are excluded
from opaque automated steps.

The general experience with Isabelle/Isar applications suggests an even stronger
conclusion to be drawn here on the issue of efficiency of proof processing. One
could argue that local steps requiring substantial amounts of run time (due to
large search spaces) are somewhat questionable as an “atomic” justification in
the first place — too much heavy-duty reasoning is performed out of sight of
the reader. Certainly, this attitude assumes that the automated tools involved
here somehow correlate the inherent complexity of a problem with real run time.
Realistic proof procedures are typically quite “uneven” in that respect, though.
Nevertheless, an experienced Isar proof writer would think twice about terminal
steps that require excessive run time unexpectedly.
Incidently, a similar philosophy is encountered in Mizar [Rudnicki, 1992] [Try-
bulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999], where the builtin proof proce-
dure for finishing local proof obligations is strictly limited to a class of prob-
lems that may be decided efficiently [Rudnicki, 1987]. On the other hand, this
slightly restrictive approach rules out the use of advanced tools required for a
broader range of applications. Outside of the primary domain of Mizar (i.e. clas-
sical mathematics and set-theory) its applications tend to become crowded by
numerous intermediate steps, to accommodate the relatively weak automation

296 CHAPTER 10. Example: Unix security

facilities.
So it is certainly a good thing to enable Isar proof texts to incorporate arbitrarily
exotic proof methods that happen to be available as tactic implementations in
the raw Isabelle system. According to the general principle of liberality (cf.
§1.3), it is left to the user to make proper use of what has been made available.

Chapter 11

Conclusion

11.1 Stocktaking

Taking a well-understood natural deduction framework as a starting point (chap-
ter 2), we have introduced the versatile high-level proof language Isar (chap-
ter 3), which supports human-readable proof texts, is generic wrt. the under-
lying object-logic, extensible wrt. proof tools and specific language elements,
and foundationally sound by full reduction to primitive inferences. Existing ap-
proaches to mechanized theorem proving have so far covered only some of these
aspects in isolation, where Isar provides a coherent view of the whole picture.
This broad scope of Isar marks a distinctive advantage, consequently we have
been able to cover rather general techniques for structured proof composition
(chapter 5 and chapter 6).
The Isar concepts have turned out sufficiently simple and mature to provide a
viable basis for the robust system implementation Isabelle/Isar [Wenzel, 2001a].
We have also been able to demonstrate that the generic framework may be actu-
ally instantiated to the concrete setting of Isabelle/HOL (chapter 7). Practical
usability has been demonstrated both for the generic framework (chapter 4 and
chapter 8) and the Isabelle/HOL instantiation (chapter 9 and chapter 10). In
particular, we have been able to include complete formal proof texts of mean-
ingful examples (despite the extra printed pages demanded here).
By having achieved a new quality of intelligible semi-automated reasoning, we
expect to address new application areas, as well as new users who have not
considered interactive theorem proving as something reasonable so far. Note
that Isar does not necessarily attract exactly the same kind of users as tactical
theorem proving. Due to the very shift of proof development paradigms there are
quite different techniques required by proof writers. Experts in the old tactical
style certainly do have to unlearn some of their habits to master structured proof
composition in Isar, where fresh users would typically have fewer problems.

Concerning our main objective of human-readable proofs, we observe that there

297

298 CHAPTER 11. Conclusion

is no single underlying principle of intelligible texts. Drawing from a certain
repertoire of common elements, proof authors need to spend some care on com-
posing an adequate record of formal reasoning. From the Isar perspective the
following aspects have turned out particular important.

• Moderate inclusion of explicit propositions in the text.

Proof authors certainly do have to state key propositions explicitly, but
need to avoid clutter due to excessive coverage of concrete terms. Isar
provides specific support for casual term abbreviations via higher-order
matching (§3.2.3 and §3.4.1).

• Clear indication of the present role of logical entities (assumptions versus
conclusions, universal versus existential parameters etc.).

Isar provides a particularly rich collection of specific context elements
(§3.2.3, §3.3.1, and §5.3). Appropriate variations on conclusions are avail-
able as well (§3.2.3 and §3.3.3). All of this is reduced to raw

∧
/=⇒

statements internally.

• Succinct references to previous facts, while avoiding explicit labels.

Isar’s then element (§3.2.3) provides the most fundamental mechanism of
referring directly to the preceding result. Several derived elements exploit
this principle further (§3.3.3), even at a somewhat larger scale within
the calculational proof style (§6.3 and §6.4.3). Referencing facts explicitly
should be really restricted to rare situations of more complex dependencies
(e.g. multiple uses).

• Indication of relevance of facts involved in particular proof steps.

Chaining of facts via then (or its derived forms) enables natural tech-
niques of “feeding” results into consecutive goals. For general (initial)
proof steps of single rules, this gives rise to mixed forward-backward rea-
soning (§5.2.3). In conjunction with automated methods, the Isar text
may record the contributing collection of relevant facts explicitly, which
improves both readability and scalability of automated means (§7.5.2).

We have also gained further insights into the role of some general aspects of
theorem proving in the particular context of human-readable proofs.

• Readability requires a clear separation of static proof text from dynamic
goal state.

Tactic languages are apt to let arbitrary elements from implicit goal con-
figurations intrude the recorded source, e.g. names of local parameters
introduced implicitly by previous refinements. The Isar proof processor
refrains from inspecting the internal structure of facts or goals at all. Di-
rect transformation of (internal) goal states have been discontinued. Proof
writers need to “answer” a particular form of subgoal by explicit text, with
their own choice of parameters (§3.2.3 and §5.2.1).

11.2. Future work 299

• The importance of extra-logical concepts.

Achieving a high-level view on formal logic does not necessarily involve
new (exotic) calculi. Instead, we have built a different extra-logical layer of
structured proof configurations for the Isar interpretation process (§3.2.3).
Based on this rich auxiliary structure, the proof interpreter “drives” a few
logical primitives (§2.2 and §2.4); the example interpretation trace at the
end of §3.2.3 illustrates the relationship of the two layers particularly well.

Note that some Isar concepts do not have any logical impact at all, e.g.
term abbreviations (§3.2.3 and §3.4.1). Here we exploit the powerful mech-
anism of higher-order unification for abstract abbreviation patterns, even
with Hindley-Milner polymorphism (§3.4.3), without having to bother
about extending the logical foundations.

• Automated reasoning techniques are not a key issue.

Big-step reasoning with automated bridging of considerable gaps in the
course of formal reasoning has often been proposed as the standard way
to achieve “high-level” proofs of some form.

Isar demonstrates that careful structural arrangement of proof elements
may greatly reduce the need for automated tools. The very core mech-
anisms of Isar proof composition already achieve decent arrangements,
mainly by means of higher-order resolution of single natural deduction
rules (which may involve higher-order unification). Furthermore, indicat-
ing relevant facts in (local) automated steps may reduce the complexity
of proof problems considerably, which enables to get farther by simpler
proof tools (e.g. plain rewriting).

11.2 Future work

Despite the achievements of the present work on Isabelle/Isar, this can only be
another stepping-stone towards further investigations on high-level formal proof
languages at large. Apart from various technical details of Isar proof processing
there are also some issues of putting the Isar concepts into a wider context.

Synthesized results

Isar takes the existing natural deduction framework of Isabelle/Pure as a start-
ing point, exploiting much of its inherent potential for the purposes of structured
proof processing, rather than mere tactical theorem proving. On the other hand,
Isar ignores Isabelle’s capability of schematic goal statements, which would ad-
mit incremental synthesis of proven results by stepwise refinement (similar to
logic-programming techniques), e.g. see [Paulson, 2001a].

300 CHAPTER 11. Conclusion

Isar proof texts really need to be fully specified in advance. Whereas unbound
schematic variables may well occur inside of internal goal states (after some ini-
tial refinement), the consecutive proof body needs to accommodate this again
by definite text elements (typically involving fix/assume and show). Exclud-
ing schematic statements is a tribute to overall readability, i.e. written texts
may not just “mutate” dynamically. Moreover, schematic goals would violate
modularity of sub-proofs, since the course of reasoning in the body affects the
result instantiation achieved eventually. (Modularity is a key factor to support
large-scale applications.)
Nevertheless, the general idea of synthesizing results is not completely alien
to structured reasoning, although one might have to rethink existing tactical
approaches in terms of Isar concepts. In particular, the calculational proof style
(chapter 6) offers a general framework for synthesizing facts in a forward fashion,
by consecutive composition of chains of intermediate results.
Based on this observation, we have already experimented with some mechanisms
for stepwise synthesis of verified programs in Hoare Logic elsewhere [Wenzel,
2001c, §13–14]. Here the structure of the resulting Isar text corresponds nicely
to that of the program. On the other hand, practical usability demands further
refinements of these ideas, such as proper “export” of finished fragments without
repeated statements of Hoare triples in the text, and more handsome right-to-
left development to accommodate incremental reasoning from post-conditions
to pre-conditions.

Unusual logics

The Isar proof language provides a faithful high-level view of the underlying
natural deduction framework of Isabelle/Pure. Object-logics that directly con-
form to the induced notion of statements over meta-level

∧
/=⇒ connectives

may immediately benefit from the Isar layer (e.g. chapter 4 and chapter 8).
On the other hand, “unusual” logics (from the natural deduction perspective)
may demand different encodings within the Isabelle framework to begin with.
For example, existing formulations of modal, temporal, and linear logics depend
on a version of sequent calculus [Isabelle library], featuring explicit representa-
tions of complete proof configurations as complex meta-logical judgments. Un-
fortunately, that slightly indirect view on the object-logic results in impractical
Isar proof texts, requiring statements of whole sequents in the text over and
over again; partially specified configurations with schematic sequent variables
are also unavailable. So the Isar text would basically degenerate into a low-level
trace of sequent-calculus proofs. Workable interactive development would also
pose a fundamental problem.
Unusual logics are rarely used in Isabelle at all, so one might argue that even
the traditional tactical view turns out as slightly inconvenient here. Certainly,
one might consider to augment the underlying framework to cover modalities
itself, notably a meta-level “2” operator. Then the Isar language might be

11.2. Future work 301

extended accordingly to achieve reasonable representations of modal reasoning.
There are also alternative approaches [Basin and Matthews, 2001] of “encoding
less well behaved logics” directly within a pure natural deduction framework,
namely via “labeled deductive systems”. It would be interesting to see if this
provides a viable starting point for adequate proof texts within Isar as well. That
view could become particularly relevant in practice to support similar semantic
embeddings of modal logics within the existing natural deduction environment
of Isabelle/HOL.

Beyond linear proof processing

The Isar language is based on left-to-right interpretation of individual proof
commands, operating on a structured proof configuration inside. This paradigm
induces a canonical sequential reading of the static proof text. Some minor
drawbacks of the left-to-right bias may be encountered both at small and large
scale, such as occasional “inversions” of the wording (e.g. patterns of the form
“{ . . . } note a = this” in §5.2.3), or the limitations of non-linear forward proof
patterns (cf. the discussion of “generalized case-splitting” in §5.5.3).
Further conveniences not available in the present incremental interpretation
model are global static analysis (notably simultaneous type-checking, cf. §3.4.3),
and cumulative error reporting of failed proof steps (Isabelle/Isar currently stops
at the first problem encountered). Batch-mode proof processing (where the
whole text is available at once) could achieve such features quite easily, but we
certainly do not intend to trade the virtues of incremental proof development
(including interactive experimentation) for such relatively marginal issues.
In fact, the potential to support block-structured top-down development is al-
ready present in Isabelle/Isar, since sub-proofs may be processed independently.
It is already possible to skip failed proof steps by inserting a “dummy proof”
temporarily [Wenzel, 2001a]. Further convenience is mainly a matter of user-
interface support; the existing Proof General technology [Aspinall, 2000] appears
to have sufficient potential to overcome its present focus on linear proof script
processing at a later stage.

Large-scale theory development

As may be learned from the Mizar project [Rudnicki, 1992] [Trybulec, 1993],
both readable proofs and viable support for modular theory concepts (with
mathematical structures) are important prerequisites for large-scale library de-
velopments, attracting contributions by many authors.
Isar already inherits a canonical concept of derived natural deduction rules from
the underlying framework. This essentially admits to abstract certain reasoning
patterns into a meta-level theorem, which may be used as a single proof rule
later on. So we already achieve small-scale packaging of recurrent proof schemes,
analogous to functional abstraction.

302 CHAPTER 11. Conclusion

Integration of the Isar language with actual module systems for logical envi-
ronments would be certainly desirable as well. Here the existing concept of
“locales” [Kammüller et al., 1999] for Isabelle/Pure appears to be particularly
promising, say by generalizing its immediate view of

∧
/=⇒ contexts to that

of Isar proof contexts. Such a version of locales would enable packaging of Isar
elements fix, assume, def , let, note etc., maybe even obtain. Further issues
may arise when moving between different contexts within structured proofs.

Meta-theoretic studies of Isar

Obviously the interpretation process of Isar commands (§3.2.3), which provides
an operational semantics, may be exploited for further meta-theoretical studies
of the language. The standard repertoire includes suitable notions of correctness
and completeness, in terms of primitive inferences of the underlying framework.
It would be particularly interesting to formalize these aspects of Isar within
Isabelle/Isar itself (e.g. based on an inductive model in Isabelle/HOL). This
would continue to the old tradition of presenting new programming language
designs by giving an interpreter within the same language.
On the other hand, even such fully formal treatment of Isar meta-theory would
be of relatively little practical relevance, apart from providing another concrete
application. In practice, correctness of Isar proof processing is better achieved
analogously to Milner’s “Correctness by Construction”, which means here that
high-level proof elements are fully reduced to primitive inferences at run-time.
Recall that Isar even treats the primitive level as fully abstract (§1.4), being
independent of the exact internal structure of the results.
Moreover, completeness means for practical purposes that a reasonable range of
applications may be addressed. This has already been demonstrated empirically,
by the reference examples of chapter 8, chapter 9, and chapter 10. In fact, these
“live demonstrations” did not yet stretch the Isabelle/Isar environment too far.
Further applications have emerged in the meantime (also by other people), and
even more may be expected for the future.

Aliquantum iam a locutione cessandum est,
ut si ad aliorum miracula enarranda tendimus,
loquendi vires interim per silentium reparemus.

Bibliography

[Abel et al., 2001] A. Abel, B.-Y. E. Chang, and F. Pfenning. Human-readable
machine-verifiable proofs for teaching constructive logic. IJCAR Workshop on
Proof Transformations, Proof Presentations and Complexity of Proofs (PTP-
01), http://www.tcs.informatik.uni-muenchen.de/∼abel/ptp01.ps.gz, 2001.

[Agda] Agda homepage. http://www.cs.chalmers.se/∼catarina/agda/.

[Andrews, 1986] P. B. Andrews. An Introduction to Mathematical Logic and
Type Theory: To Truth Through Proof. Academic Press, 1986.

[Arkoudas, 1998] K. Arkoudas. Deduction vis-a-vis computation: The need
for a formal language for proof engineering. Unpublished paper, The MIT
Express project, http://www.ai.mit.edu/projects/express/, June 1998.

[Asperti et al., 2001] A. Asperti, L. Padovani, C. S. Coen, and I. Schena. HELM
and the semantic math-web. In Boulton and Jackson [2001].

[Aspinall, 2000] D. Aspinall. Proof General: A generic tool for proof develop-
ment. In European Joint Conferences on Theory and Practice of Software
(ETAPS), 2000.

[Back and von Wright, 1999] R. J. Back and J. von Wright. Structured deriva-
tions: A method for doing high-school mathematics carefully. Technical Re-
port 246, Turku Centre for Computer Science, 1999.

[Back et al., 1997] R. J. Back, J. Grundy, and J. von Wright. Structured cal-
culational proof. Formal Aspects of Computing, 9:469–483, 1997.

[Balaa and Bertot, 2000] A. Balaa and Y. Bertot. Fix-point equations for well-
founded recursion in type theory. In Harrison and Aagaard [2000].

[Bali] The Bali project. http://isabelle.in.tum.de/Bali/.

[Bancerek and Carlson, 1993] G. Bancerek and P. Carlson. Mizar and the ma-
chine translation of mathematics documents. Unpublished paper, 1993.

[Barendregt and Geuvers, 2001] H. Barendregt and H. Geuvers. Proof assis-
tants using dependent type systems. In A. Robinson and A. Voronkov, edi-
tors, Handbook of Automated Reasoning. Elsevier, 2001.

303

http://www.tcs.informatik.uni-muenchen.de/~abel/ptp01.ps.gz
http://www.cs.chalmers.se/~catarina/agda/
http://www.ai.mit.edu/projects/express/
http://isabelle.in.tum.de/Bali/

304 BIBLIOGRAPHY

[Barendregt et al., 1995] H. P. Barendregt, G. Barthe, and M. Ruys. A two
level approach towards lean proof-checking. In S. Berardi and M. Coppo,
editors, Types for Proofs and Programs (TYPES’95), volume 1158 of LNCS,
1995.

[Barendregt, 1992] H. P. Barendregt. Lambda calculi with types. In S. Abram-
sky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in
Computer Science, volume 2, pages 118–309. Oxford University Press, 1992.

[Barras et al., 1999] B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy,
D. Delahaye, D. de Rauglaudre, J.-C. Filliâtre, E. Giménez, H. Herbelin,
G. Huet, H. Laulhère, C. Muñoz, C. Murthy, C. Parent-Vigouroux, P. Loise-
leur, C. Paulin-Mohring, A. Säıbi, and B. Werner. The Coq Proof Assistant
Reference Manual, version 6.3. INRIA, 1999.

[Barwise and Etchemendy, 1995] J. Barwise and J. Etchemendy. Hyperproof.
CSLI Lecture Notes, Stanford, 1995. http://www-csli.stanford.edu/hp/.

[Barwise and Etchemendy, 1998] J. Barwise and J. Etchemendy. Computers,
visualization, and the nature of reasoning. In T. W. Bynum and J. H. Moor,
editors, The Digital Phoenix: How Computers are Changing Philosophy. Lon-
don: Blackwell, 1998.

[Basin and Matthews, 2001] D. Basin and S. Matthews. Logical frameworks.
In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic,
second edition. Reidel, 2001.

[Bauer and Wenzel, 2000] G. Bauer and M. Wenzel. Computer-assisted mathe-
matics at work — the Hahn-Banach theorem in Isabelle/Isar. In T. Coquand,
P. Dybjer, B. Nordström, and J. Smith, editors, Types for Proofs and Pro-
grams: TYPES’99, volume 1956 of LNCS, 2000.

[Bauer and Wenzel, 2001] G. Bauer and M. Wenzel. Calculational reasoning
revisited — an Isabelle/Isar experience. In Boulton and Jackson [2001].

[Bauer et al., 2001] G. Bauer, T. Nipkow, L. C. Paulson, T. M. Rasmussen, and
M. Wenzel. The supplemental Isabelle/HOL library. Part of the Isabelle99-2
distribution, http://isabelle.in.tum.de/library/HOL/Library/document.pdf,
2001.

[Bauer, 1999] G. Bauer. Lesbare formale Beweise in Isabelle/Isar — der Satz
von Hahn-Banach. Master’s thesis, TU München, November 1999. http:
//home.in.tum.de/∼bauerg/HahnBanach-DA.pdf.

[Bauer, 2001a] G. Bauer. The Hahn-Banach Theorem for real vector spaces.
Part of the Isabelle99-2 distribution, http://isabelle.in.tum.de/library/HOL/
HOL-Real/HahnBanach/document.pdf, February 2001.

[Bauer, 2001b] G. Bauer. Some properties of CTL. http://isabelle.in.tum.de/
library/HOL/CTL/document.pdf, June 2001.

http://www-csli.stanford.edu/hp/
http://isabelle.in.tum.de/library/HOL/Library/document.pdf
http://home.in.tum.de/~bauerg/HahnBanach-DA.pdf
http://home.in.tum.de/~bauerg/HahnBanach-DA.pdf
http://isabelle.in.tum.de/library/HOL/HOL-Real/HahnBanach/document.pdf
http://isabelle.in.tum.de/library/HOL/HOL-Real/HahnBanach/document.pdf
http://isabelle.in.tum.de/library/HOL/CTL/document.pdf
http://isabelle.in.tum.de/library/HOL/CTL/document.pdf

BIBLIOGRAPHY 305

[Benl et al., 1998] H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and
W. Zuber. Proof theory at work: Program development in the Minlog system.
In W. Bibel and P. Schmitt, editors, Automated Deduction – A Basis for
Applications, volume II: Systems and Implementation Techniques of Applied
Logic Series. Kluwer Academic Publishers, 1998.

[Berghofer and Nipkow, 2000] S. Berghofer and T. Nipkow. Proof terms for
simply typed higher order logic. In Harrison and Aagaard [2000].

[Berghofer and Wenzel, 1999] S. Berghofer and M. Wenzel. Inductive datatypes
in HOL — lessons learned in Formal-Logic Engineering. In Bertot et al. [1999].

[Berghofer and Wenzel, 2001] S. Berghofer and M. Wenzel. The Isabelle System
Manual, 2001. Part of the Isabelle99-2 distribution, http://isabelle.in.tum.
de/doc/system.pdf.

[Bertot and Thery, 1996] Y. Bertot and L. Thery. A generic approach to build-
ing user interfaces for theorem provers. Journal of Symbolic Computation,
11, 1996.

[Bertot et al., 1997] Y. Bertot, T. Kleymann-Schreiber, and D. Sequeira. Im-
plementing proof by pointing without a structure editor. Technical report,
LFCS Edinburgh, 1997.

[Bertot et al., 1999] Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Th-
ery, editors. Theorem Proving in Higher Order Logics: TPHOLs ’99, volume
1690 of LNCS, 1999.

[Boulton and Jackson, 2001] R. J. Boulton and P. B. Jackson, editors. Theorem
Proving in Higher Order Logics: TPHOLs 2001, volume 2152 of LNCS, 2001.

[Burstall, 1998] R. Burstall. Teaching people to write proofs: a tool. In
CafeOBJ Symposium, Numazu, Japan, April 1998.

[Church, 1940] A. Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, pages 56–68, 1940.

[Cohn, 1995] A. Cohn. Proof accounts in HOL. Unpublished paper, http://
www.cl.cam.ac.uk/∼mjcg/papers/AvraAccountsPaper.ps.gz, 1995.

[Constable et al., 1986] R. L. Constable, S. F. Allen, H. M. Bromley, W. R.
Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P.
Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing Math-
ematics with the Nuprl Proof Development System. Prentice Hall, 1986.

[Coquand and Coquand, 1999] T. Coquand and C. Coquand. Structered type
theory. Workshop on Logical Frameworks and Meta-Languages, Paris, France,
1999.

http://isabelle.in.tum.de/doc/system.pdf
http://isabelle.in.tum.de/doc/system.pdf
http://www.cl.cam.ac.uk/~mjcg/papers/AvraAccountsPaper.ps.gz
http://www.cl.cam.ac.uk/~mjcg/papers/AvraAccountsPaper.ps.gz

306 BIBLIOGRAPHY

[Coquand and Paulin-Mohring, 1990] T. Coquand and C. Paulin-Mohring. In-
ductively defined types. In P. Martin-Löf and G. Mints, editors, Proceedings
of Colog’88, volume 417 of LNCS, 1990.

[Coscoy et al., 1995] Y. Coscoy, G. Kahn, and L. Théry. Extracting text from
proofs. In Typed Lambda Calculus and Applications, volume 902 of LNCS.
Springer, 1995.

[Dahn and Wolf, 1994] B. I. Dahn and A. Wolf. A calculus supporting struc-
tured proofs. Journal of Information Processing and Cybernetics (EIK), 30(5-
6):261–276, 1994. Akademie Verlag Berlin.

[Dahn et al., 1997] B. I. Dahn, J. Gehne, T. Honigmann, and A. Wolf. Integra-
tion of automated and interactive theorem proving in ILF. In W. McCune,
editor, 14th International Conference on Automated Deduction — CADE-14,
volume 1249 of LNAI. Springer, 1997.

[Davey and Priestley, 1990] B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order. Cambridge University Press, 1990.

[de Bruijn, 1980] N. G. de Bruijn. A survey of the project AUTOMATH. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, pages 579–606. Academic Press, 1980.

[Despeyroux et al., 1997] J. Despeyroux, F. Pfenning, and C. Schürmann.
Primitive recursion for higher-order abstract syntax. In R. Hindley, editor,
Proceedings of the Third International Conference on Typed Lambda Calculus
and Applications (TLCA’97), volume 1210 of LNCS. Springer, 1997.

[Dijkstra and Scholten, 1990] E. W. Dijkstra and C. S. Scholten. Predicate Cal-
culus and Program Semantics. Texts and monographs in computer science.
Springer, 1990.

[Farmer et al., 1993] W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS:
An interactive mathematical proof system. Journal of Automated Reasoning,
11(2):213–248, Oct 1993.

[Gentzen, 1935] G. Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 1935.

[Geuvers et al., 2000] H. Geuvers, F. Wiedijk, J. Zwanenburg, R. Pollack, and
H. Barendregt. The “Fundamental Theorem of Algebra” project, 2000. http:
//www.cs.kun.nl/∼freek/fta/index.html.

[Gordon and Melham, 1993] M. J. C. Gordon and T. F. Melham, editors. In-
troduction to HOL: A theorem proving environment for higher order logic.
Cambridge University Press, 1993.

[Gordon et al., 1979] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Ed-
inburgh LCF: A Mechanized Logic of Computation, volume 78 of LNCS.
Springer, 1979.

http://www.cs.kun.nl/~freek/fta/index.html
http://www.cs.kun.nl/~freek/fta/index.html

BIBLIOGRAPHY 307

[Gordon, 1985a] M. J. C. Gordon. HOL: A machine oriented formulation of
higher order logic. Technical Report 68, University of Cambridge Computer
Laboratory, 1985.

[Gordon, 1985b] M. J. C. Gordon. Why higher-order logic is a good formalism
for specifying and verifying hardware. Technical Report 77, University of
Cambridge Computer Laboratory, 1985.

[Gordon, 1988] M. J. C. Gordon. HOL: a proof generating system for higher-
order logic. In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Speci-
fication, Verification and Synthesis. Kluwer, 1988.

[Gordon, 2000] M. J. C. Gordon. From LCF to HOL: a short history. In
G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language, and In-
teraction: Essays in Honour of Robin Milner. MIT Press, 2000. http:
//www.cl.cam.ac.uk/∼mjcg/papers/HolHistory.html.

[Grundy and Newey, 1998] J. Grundy and M. Newey, editors. Theorem Proving
in Higher Order Logics: TPHOLs ’98, volume 1479 of LNCS, 1998.

[Grundy, 1991] J. Grundy. Window inference in the HOL system. In M. Archer,
J. J. Joyce, K. N. Levitt, and P. J. Windley, editors, Proceedings of the In-
ternational Workshop on the HOL Theorem Proving System and Its Applica-
tions. ACM SIGDA, IEEE Computer Society Press, 1991.

[Gunter and Felty, 1997] E. L. Gunter and A. Felty, editors. Theorem Proving
in Higher Order Logics: TPHOLs ’97, volume 1275 of LNCS, 1997.

[Hallgren and Ranta, 2000] T. Hallgren and A. Ranta. An extensible proof text
editor. In Logic for Programming and Automated Reasoning (LPAR 2000),
volume 1955 of LNAI. Springer, 2000.

[Harrison and Aagaard, 2000] J. Harrison and M. Aagaard, editors. Theorem
Proving in Higher Order Logics: TPHOLs 2000, volume 1869 of LNCS, 2000.

[Harrison, 1995] J. Harrison. Inductive definitions: automation and application.
In P. J. Windley, T. Schubert, and J. Alves-Foss, editors, Higher Order Logic
Theorem Proving and Its Applications: Proceedings of the 8th International
Workshop, volume 971 of LNCS, pages 200–213, Aspen Grove, Utah, 1995.
Springer.

[Harrison, 1996a] J. Harrison. HOL done right. Unpublished paper, 1996.

[Harrison, 1996b] J. Harrison. A Mizar mode for HOL. In Wright et al. [1996],
pages 203–220.

[Harrison, 1996c] J. Harrison. Theorem proving with the real numbers. PhD
thesis, University of Cambridge Computer Laboratory, 1996. Techni-
cal Report number 408, http://www.ftp.cl.cam.ac.uk/ftp/papers/reports/
TR408-jrh-Theorem-Proving-with-the-Real-Numbers.ps.gz.

http://www.cl.cam.ac.uk/~mjcg/papers/HolHistory.html
http://www.cl.cam.ac.uk/~mjcg/papers/HolHistory.html
http://www.ftp.cl.cam.ac.uk/ftp/papers/reports/TR408-jrh-Theorem-Proving-with-the-Real-Numbers.ps.gz
http://www.ftp.cl.cam.ac.uk/ftp/papers/reports/TR408-jrh-Theorem-Proving-with-the-Real-Numbers.ps.gz

308 BIBLIOGRAPHY

[Harrison, 1998] J. Harrison. Formalizing Dijkstra. In Grundy and Newey
[1998].

[Henkin, 1950] L. Henkin. Completeness in the theory of types. Journal of
Symbolic Logic, 15(2):81–91, 1950.

[Heuser, 1986] H. Heuser. Funktionalanalysis: Theorie und Anwendung. Teub-
ner, 1986.

[Hindley, 1969] J. R. Hindley. The principal type-scheme of an object in com-
binatory logic. Trans. Amer. Math. Soc., 146, 1969.

[Hofmann, 1999] M. Hofmann. Semantical analysis of higher-order abstract
syntax. In 14th Annual IEEE Symposium on Logic in Computer Science
(LICS’99), volume 158. IEEE Computer Society, 1999.

[Hofstadter, 1979] D. R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden
Braid. Basic Books, New York, 1979.

[Hoover and Rudnicki, 1996] H. J. Hoover and P. Rudnicki. Teaching fresh-
man logic with Mizar-MSE. DIMACS Workshop on Teaching Logic
and Reasoning in an Illogical World, http://web.cs.ualberta.ca/∼hoover/
dimacs-teaching-logic/paper.html, 1996.

[Hutter, 2000] D. Hutter. Management of change in structured verification.
In Proceedings Automated Software Engineering (ASE-2000). IEEE, 2000.
http://www.dfki.de/vse/papers/hutter00.ps.gz.

[Isabelle library] Isabelle theory library. http://isabelle.in.tum.de/library/.

[Jape] Jape — a framework for building interactive proof editors. http://users.
comlab.ox.ac.uk/bernard.sufrin/jape.html.

[Kammüller et al., 1999] F. Kammüller, M. Wenzel, and L. C. Paulson. Locales:
A sectioning concept for Isabelle. In Bertot et al. [1999].

[Kaufmann et al., 2000] M. Kaufmann, P. Manolios, and J. S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer, 2000.

[Klein et al., 2001] G. Klein, T. Nipkow, D. v. Oheimb, and C. Pusch. µJava.
Part of the Isabelle99-2 distribution, http://isabelle.in.tum.de/library/HOL/
MicroJava/document.pdf, 2001.

[Lamport and Paulson, 1999] L. Lamport and L. C. Paulson. Should your spec-
ification language be typed? ACM Transactions on Programming Languages
and Systems, 21(3):502–526, 1999.

[Lamport, 1994] L. Lamport. How to write a proof. American Mathematical
Monthly, 102(7):600–608, 1994.

http://web.cs.ualberta.ca/~hoover/dimacs-teaching-logic/paper.html
http://web.cs.ualberta.ca/~hoover/dimacs-teaching-logic/paper.html
http://www.dfki.de/vse/papers/hutter00.ps.gz
http://isabelle.in.tum.de/library/
http://users.comlab.ox.ac.uk/bernard.sufrin/jape.html
http://users.comlab.ox.ac.uk/bernard.sufrin/jape.html
http://isabelle.in.tum.de/library/HOL/MicroJava/document.pdf
http://isabelle.in.tum.de/library/HOL/MicroJava/document.pdf

BIBLIOGRAPHY 309

[McAllester, 1988] D. A. McAllester. ONTIC: A Knowledge Representation
System for Mathematics. MIT Press, 1988.

[McAllester, 1990] D. A. McAllester. Automatic recognition of tractability in
inference relations. Technical Report 1215, MIT, 1990.

[McCarthy, 1960] J. McCarthy. Recursive functions of symbolic expressions and
their computation by machine (part I). Communications of the ACM, April
1960. http://www-formal.stanford.edu/jmc/recursive.html.

[Miller, 1991] D. Miller. A logic programming language with lambda-
abstraction, function variables, and simple unification. Journal of Logic and
Computation, 1(4), 1991. http://www.cse.psu.edu/∼dale/papers/jlc91.pdf.

[Milner, 1978] R. Milner. A theory of type polymorphism in programming. J.
Comp. Sys. Sci., 17, 1978.

[Mizar library] Mizar mathematical library. http://www.mizar.org/library/.

[Mizar MSE] Mizar MSE. http://www.cs.ualberta.ca/∼piotr/Mizar-MSE/.

[Müller and Slind, 1997] O. Müller and K. Slind. Treating partiality in a logic
of total functions. The Computer Journal, 40(10), 1997.

[Müller et al., 1999] O. Müller, T. Nipkow, D. v. Oheimb, and O. Slotosch.
HOLCF = HOL + LCF. Journal of Functional Programming, 9, 1999.

[Muzalewski, 1993] M. Muzalewski. An Outline of PC Mizar. Fondation of
Logic, Mathematics and Informatics — Mizar Users Group, 1993. http://
www.cs.kun.nl/∼freek/mizar/mizarmanual.ps.gz.

[Naraschewski and Wenzel, 1998] W. Naraschewski and M. Wenzel. Object-
oriented verification based on record subtyping in Higher-Order Logic. In
Grundy and Newey [1998].

[Naraschewski, 2001] W. Naraschewski. Teams as Types — A Formal Treatment
of Authorisation in Groupware. PhD thesis, TU München, 2001.

[Nederpelt et al., 1994] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer,
editors. Selected Papers on Automath, Studies in Logic 133. North Holland,
1994.

[Nipkow and Paulson, 2001] T. Nipkow and L. C. Paulson. Isabelle/HOL —
The Tutorial, 2001. Part of the Isabelle99-2 distribution, http://isabelle.in.
tum.de/doc/tutorial.pdf.

[Nipkow and Prehofer, 1993] T. Nipkow and C. Prehofer. Type checking type
classes. In 20th ACM Symp. Principles of Programming Languages, 1993.

[Nipkow et al., 2001] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle’s Log-
ics: HOL, 2001. Part of the Isabelle99-2 distribution, http://isabelle.in.tum.
de/doc/logics-HOL.pdf.

http://www-formal.stanford.edu/jmc/recursive.html
http://www.cse.psu.edu/~dale/papers/jlc91.pdf
http://www.mizar.org/library/
http://www.cs.ualberta.ca/~piotr/Mizar-MSE/
http://www.cs.kun.nl/~freek/mizar/mizarmanual.ps.gz
http://www.cs.kun.nl/~freek/mizar/mizarmanual.ps.gz
http://isabelle.in.tum.de/doc/tutorial.pdf
http://isabelle.in.tum.de/doc/tutorial.pdf
http://isabelle.in.tum.de/doc/logics-HOL.pdf
http://isabelle.in.tum.de/doc/logics-HOL.pdf

310 BIBLIOGRAPHY

[Nipkow, 1993] T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet
and G. Plotkin, editors, Logical Environments, pages 164–188. Cambridge
University Press, 1993.

[Oheimb, 2001] D. v. Oheimb. Analyzing Java in Isabelle/HOL — Formal-
ization, Type Safety and Hoare Logic. PhD thesis, TU München, 2001.
http://www4.in.tum.de/∼oheimb/diss/.

[Owre and Shankar, 1997] S. Owre and N. Shankar. The formal semantics of
PVS. Technical Report SRI-CSL-97-2, Computer Science Laboratory, SRI
International, 1997.

[Owre et al., 1996] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas.
PVS: combining specification, proof checking, and model checking. In R. Alur
and T. A. Henzinger, editors, Computer Aided Verification, volume 1102 of
LNCS, 1996.

[Paulin-Mohring, 1993] C. Paulin-Mohring. Inductive definitions in the system
Coq — rules and properties. In Proceedings of Typed Lambda Calculi and
Applications, volume 664 of LNCS, 1993.

[Paulson and Nipkow, 1994] L. C. Paulson and T. Nipkow. Isabelle: A Generic
Theorem Prover, volume 828 of LNCS. Springer, 1994.

[Paulson, 1986] L. C. Paulson. Natural deduction as higher-order resolution.
Journal of Logic Programming, 3, 1986. Revised version: http://www.cl.
cam.ac.uk/Research/Reports/TR082-lcp-higher-order-resolution.pdf.

[Paulson, 1989] L. C. Paulson. The foundation of a generic theorem prover.
Journal of Automated Reasoning, 5(3):363–397, 1989.

[Paulson, 1990] L. C. Paulson. Isabelle: the next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science. Academic Press, 1990.

[Paulson, 1991] L. C. Paulson. ML for the Working Programmer. Cambridge
University Press, 1991.

[Paulson, 1993] L. C. Paulson. Set theory for verification: I. From foundations
to functions. Journal of Automated Reasoning, 11(3), 1993.

[Paulson, 1994] L. C. Paulson. A fixedpoint approach to implementing
(co)inductive definitions. In A. Bundy, editor, 12th International Conference
on Automated Deduction — CADE-12, volume 814 of LNAI, pages 148–161.
Springer, 1994.

[Paulson, 1995] L. C. Paulson. Set theory for verification: II. Induction and
recursion. Journal of Automated Reasoning, 15(2), 1995.

[Paulson, 1997] L. C. Paulson. Generic automatic proof tools. In R. Veroff,
editor, Automated Reasoning and its Applications: Essays in Honor of Larry
Wos. MIT Press, 1997.

http://www4.in.tum.de/~oheimb/diss/
http://www.cl.cam.ac.uk/Research/Reports/TR082-lcp-higher-order-resolution.pdf
http://www.cl.cam.ac.uk/Research/Reports/TR082-lcp-higher-order-resolution.pdf

BIBLIOGRAPHY 311

[Paulson, 1999] L. C. Paulson. A generic tableau prover and its integration with
Isabelle. Journal of Universal Computer Science, 5(3), 1999.

[Paulson, 2001a] L. C. Paulson. Introduction to Isabelle, 2001. Part of the
Isabelle99-2 distribution, http://isabelle.in.tum.de/doc/intro.pdf.

[Paulson, 2001b] L. C. Paulson. The Isabelle Reference Manual, 2001. Part of
the Isabelle99-2 distribution, http://isabelle.in.tum.de/doc/ref.pdf.

[PDP Unix Preservation Society] PDP Unix preservation society home page.
http://minnie.cs.adfa.edu.au/PUPS/.

[Pfenning and Elliott, 1988] F. Pfenning and C. Elliott. Higher-order abstract
syntax. In Proceedings of the ACM SIGPLAN ’88 Symposium on Language
Design and Implementation, 1988.

[Pfenning and Paulin-Mohring, 1990] F. Pfenning and C. Paulin-Mohring. In-
ductively defined types in the Calculus of Constructions. In Proceedings of
Mathematical Foundations of Programming Semantics, volume 442 of LNCS,
1990.

[Pitts, 1993] A. Pitts. The HOL logic. In Gordon and Melham [1993], pages
191–232.

[Pollack, 2000] R. Pollack. Dependently typed records for representing mathe-
matical structure. In Harrison and Aagaard [2000].

[Prazmowski and Rudnicki, 1993] K. Prazmowski and P. Rudnicki. Mizar-MSE
primer. Unpublished paper, http://ugweb.cs.ualberta.ca/∼c272/Online/
Primer.html, 1993.

[Proof General] Proof General — Organize your proofs! http://www.
proofgeneral.org/home/proofgen/.

[Regensburger, 1995] F. Regensburger. HOLCF: Higher order logic of com-
putable functions. In E. Schubert, P. Windley, and J. Alves-Foss, editors,
Higher Order Logic Theorem Proving and its Applications, volume 971 of
LNCS, 1995.

[Reif, 1992] W. Reif. The KIV-system: Systematic construction of verified soft-
ware. In D. Kapur, editor, 11th International Conference on Automated De-
duction — CADE-11, volume 607 of LNAI. Springer, 1992.

[Ritchie and Thompson, 1974] D. M. Ritchie and K. Thompson. The UNIX
time-sharing system. C. ACM, 1974. http://cm.bell-labs.com/cm/cs/who/
dmr/cacm.html.

[Rudnicki, 1987] P. Rudnicki. Obvious inferences. Journal of Automated Rea-
soning, 3, 1987.

http://isabelle.in.tum.de/doc/intro.pdf
http://isabelle.in.tum.de/doc/ref.pdf
http://minnie.cs.adfa.edu.au/PUPS/
http://ugweb.cs.ualberta.ca/~c272/Online/Primer.html
http://ugweb.cs.ualberta.ca/~c272/Online/Primer.html
http://www.proofgeneral.org/home/proofgen/
http://www.proofgeneral.org/home/proofgen/
http://cm.bell-labs.com/cm/cs/who/dmr/cacm.html
http://cm.bell-labs.com/cm/cs/who/dmr/cacm.html

312 BIBLIOGRAPHY

[Rudnicki, 1992] P. Rudnicki. An overview of the MIZAR project. In 1992
Workshop on Types for Proofs and Programs. Chalmers University of Tech-
nology, Bastad, 1992.

[Ruys, 1999] M. Ruys. Studies in Mechanical Verification of Mathematical
Proofs. PhD thesis, KU Nijmegen, 1999.

[Schroeder-Heister, 1984] P. Schroeder-Heister. A natural extension of natural
deduction. Journal of Symbolic Logic, 49(4), 1984.

[Simons, 1996] M. Simons. The Presentation of Formal Proofs. PhD thesis,
Technische Universität Berlin, 1996.

[Simons, 1997] M. Simons. Proof presentation for Isabelle. In Gunter and Felty
[1997].

[Slind, 1996] K. Slind. Function definition in higher order logic. In Wright et al.
[1996].

[Slind, 1997] K. Slind. Derivation and use of induction schemes in higher-order
logic. In Gunter and Felty [1997].

[Slotosch, 1997] O. Slotosch. Higher order quotients and their implementation
in Isabelle HOL. In Gunter and Felty [1997].

[Syme, 1997a] D. Syme. DECLARE: A prototype declarative proof system for
higher order logic. Technical Report 416, University of Cambridge Computer
Laboratory, 1997.

[Syme, 1997b] D. Syme. Proving Java type soundness. Technical Report 427,
University of Cambridge Computer Laboratory, 1997.

[Syme, 1998] D. Syme. Declarative Theorem Proving for Operational Semantics.
PhD thesis, University of Cambridge, 1998.

[Syme, 1999] D. Syme. Three tactic theorem proving. In Bertot et al. [1999].

[Tanenbaum, 1992] A. S. Tanenbaum. Modern Operating Systems. Prentice-
Hall, 1992.

[Thompson, 1991] S. Thompson. Type theory and functional programming.
Addison-Wesley, 1991.

[Torvalds and others] L. Torvalds et al. The Linux kernel archives. http://
www.kernel.org.

[Trybulec, 1993] A. Trybulec. Some features of the Mizar language. Presented
at a workshop in Turin, Italy, 1993.

[Tutch] Tutorial proof checker. http://www.tcs.informatik.uni-muenchen.de/
∼abel/tutch/.

http://www.kernel.org
http://www.kernel.org
http://www.tcs.informatik.uni-muenchen.de/~abel/tutch/
http://www.tcs.informatik.uni-muenchen.de/~abel/tutch/

BIBLIOGRAPHY 313

[Unix Heritage Society] The Unix heritage society. http://minnie.cs.adfa.edu.
au/TUHS/.

[Verhoeven and Backhouse, 1999] R. Verhoeven and R. Backhouse. Interfacing
program construction and verification. In J. Wing and J. Woodcock, editors,
FM99: The World Congress in Formal Methods, volume 1708 and 1709 of
LNCS, 1999.

[Wenzel, 1994] M. Wenzel. Axiomatische Typ-Klassen in Isabelle. Master’s
thesis, TU München, 1994.

[Wenzel, 1997] M. Wenzel. Type classes and overloading in higher-order logic.
In Gunter and Felty [1997].

[Wenzel, 1999] M. Wenzel. Isar — a generic interpretative approach to readable
formal proof documents. In Bertot et al. [1999].

[Wenzel, 2001a] M. Wenzel. The Isabelle/Isar Reference Manual, 2001. Part of
the Isabelle99-2 distribution, http://isabelle.in.tum.de/doc/isar-ref.pdf.

[Wenzel, 2001b] M. Wenzel. Lattices and orders in Isabelle/HOL. Part
of the Isabelle99-2 distribution, http://isabelle.in.tum.de/library/HOL/
Lattice/document.pdf, February 2001.

[Wenzel, 2001c] M. Wenzel. Miscellaneous Isabelle/Isar examples for higher-
order logic. Part of the Isabelle99-2 distribution, http://isabelle.in.tum.de/
library/HOL/Isar examples/document.pdf, February 2001.

[Wenzel, 2001d] M. Wenzel. Some aspects of Unix file-system security. Part of
the Isabelle99-2 distribution, http://isabelle.in.tum.de/library/HOL/Unix/
document.pdf, February 2001.

[Wenzel, 2001e] M. Wenzel. Using Axiomatic Type Classes in Isabelle, 2001.
Part of the Isabelle99-2 distribution, http://isabelle.in.tum.de/doc/axclass.
pdf.

[Wiedijk, 1999] F. Wiedijk. Mizar: An impression. Unpublished paper, 1999.
http://www.cs.kun.nl/∼freek/mizar/mizarintro.ps.gz.

[Wiedijk, 2000] F. Wiedijk. The mathematical vernacular. Unpublished paper,
2000. http://www.cs.kun.nl/∼freek/notes/mv.ps.gz.

[Wiedijk, 2001a] F. Wiedijk. Digital math WWW page, 2001. http://www.cs.
kun.nl/∼freek/digimath/.

[Wiedijk, 2001b] F. Wiedijk. Mizar light for HOL light. In Boulton and Jackson
[2001].

[Wright et al., 1996] J. Wright, J. Grundy, and J. Harrison, editors. Theorem
Proving in Higher Order Logics: TPHOLs ’96, volume 1125 of LNCS, 1996.

http://minnie.cs.adfa.edu.au/TUHS/
http://minnie.cs.adfa.edu.au/TUHS/
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/library/HOL/Lattice/document.pdf
http://isabelle.in.tum.de/library/HOL/Lattice/document.pdf
http://isabelle.in.tum.de/library/HOL/Isar_examples/document.pdf
http://isabelle.in.tum.de/library/HOL/Isar_examples/document.pdf
http://isabelle.in.tum.de/library/HOL/Unix/document.pdf
http://isabelle.in.tum.de/library/HOL/Unix/document.pdf
http://isabelle.in.tum.de/doc/axclass.pdf
http://isabelle.in.tum.de/doc/axclass.pdf
http://www.cs.kun.nl/~freek/mizar/mizarintro.ps.gz
http://www.cs.kun.nl/~freek/notes/mv.ps.gz
http://www.cs.kun.nl/~freek/digimath/
http://www.cs.kun.nl/~freek/digimath/

314 BIBLIOGRAPHY

[Zammit, 1999a] V. Zammit. On the implementation of an extensible declara-
tive proof language. In Bertot et al. [1999].

[Zammit, 1999b] V. Zammit. On the Readability of Machine Checkable Formal
Proofs. PhD thesis, University of Kent, 1999.

Index

- (fact), 46
- (term), 52, 63
− (method), 60
. (command), 61
.. (command), 61
. . . (term), 51, 53
{ (command), 44
} (command), 44

add-assms (function), 54
Agda (system), 83
Alfa (system), 84
also (command), 148
antecedent (case), 51, 53, 109
antecedent-of (function), 53
apply (command), 44
apply-facts (function), 54
argument-of (function), 53
assert-goal (function), 52
assert-mode (function), 52
assm (command), 44
assms (field), 49
assume (command), 58, 99, 106
assumption (function), 29, 54
assumption (method), 60
attribute (set), 44
atts (field), 49
auto (method), 194
axclass (command), 180, 189
axiom (function), 29
axioms (field), 46

bind-facts (function), 54
bind-goal (function), 53
bind-result (function), 54
bind-statement (function), 53

bind-terms (function), 52
blast (method), 194
bool (set), 25, 43
by (command), 61
by-assumption (function), 36

calculation (set), 147
case (command), 58, 101, 109
case (set), 44
case-names (attribute), 123
cases (attribute), 123
cases (field), 49
cases (method), 124
clarify (method), 194
close-block (function), 52
coinductive (command), 180
command (set), 44
compose (function), 35
conclude (function), 35, 53
conclude-goal (function), 53
conclusion-of (function), 53
cong (attribute), 195
constdefs (command), 178, 180
consts (command), 178
consts (field), 46
consumes (attribute), 123
context (field), 47
context (set), 49
continue (function), 147
Coq (system), 5, 14, 80, 82, 98, 198,

225, 252, 258, 288, 292, 293

data (field), 46, 49, 51
datatype (command), 180, 184
DECLARE (system), 9, 64, 68, 138,

140, 143, 169, 170, 192, 260

315

316 INDEX

def (command), 58, 101, 106, 119
defs (command), 178, 189
dest (attribute), 60, 195
discharge (function), 59
done (command), 44

elim (attribute), 60, 195
eliminate (function), 112
expand (function), 59
export (function), 52
export-this (function), 54

fact (set), 31, 44
facts (field), 49
finally (command), 148
finish (method), 51
first (function), 26
fix (command), 44, 97
fixes (field), 49
flat (function), 26
fold (method), 60
force (method), 194
from (command), 61
functions, 26

denumeration, 26
partial, 26
total, 26

generalize (function), 34, 52–54
goal (field), 47
goal (set), 49

have (command), 44
hence (command), 61
HOL (system), 4, 15, 73, 80, 81,

159, 175, 187, 220, 251

iff (attribute), 195
ILF (system), 169
IMPS (system), 252
induct (attribute), 123
induct (method), 124, 135
inductive (command), 180, 181
init (function), 35, 53
init-context (function), 51
init-goal (function), 53
init-proof (function), 51

insert (method), 60, 113
instance (command), 189
intro (attribute), 60, 113, 195
Isabelle (system), 6
iterate (function), 26, 54

KIV (system), 170

last (function), 26
lemma (command), 61
lemmas (command), 61
let (command), 44, 101
library (set), 46
lists, 26

map (function), 26
map-enclosing (function), 53
method (set), 44
Minlog (system), 6
Mizar (system), 8, 19, 64, 68, 74,

89, 98, 136, 138, 141, 147–
149, 158, 169, 172, 192, 200,
225, 229, 231, 248, 254, 259,
295, 301

Mizar-Light (system), 10, 82, 90
Mizar-mode-for-HOL (system), 9, 74,

147, 149, 169
Mizar-MSE (system), 137
mode (field), 47
moreover (command), 148

name (field), 49
name (set), 28, 43
name-atts (set), 44
names

reserved, 46, 51, 52, 113, 148
nat (set), 25, 43
next (command), 44
norm (function), 52
note (command), 44
nothing (fact), 46

obtain (command), 112
OF (attribute), 61
of (attribute), 61
Ontic (system), 172
open-block (function), 52

INDEX 317

params (attribute), 123
prems (fact), 51, 54
prepare-facts (function), 54
prepare-term (function), 52
prepare-terms (function), 52
prepare-termss (function), 52
presume (command), 58, 101, 106
primrec (command), 180, 186
problem (field), 49
proof (command), 44
proof (set), 47
Proof General (system), 15, 18, 19,

204, 291, 292, 301
proof scripts, 76

unstable, 80
proof texts, 76
prop (set), 29, 43
ProveEasy (system), 10, 82, 84, 102
purge (function), 54
PVS (system), 7, 146, 159, 198, 199,

247, 252, 258

qed (command), 44

recdef (command), 180, 187
record (command), 180, 188
records, 27
refine (function), 36, 53
refine-enclosing (function), 53
reset-this (function), 52
resolve (function), 36
result (function), 147
rule (attribute), 195
rule (method), 60, 61
rule (set), 44

safe (method), 194
select (function), 53
set-this (function), 52
sets, 25
simp (attribute), 195
simp (method), 194, 195
simp-all (method), 194
solve (field), 49
SPL (system), 10
split (attribute), 195

start (function), 147
statement (field), 49
store-result (function), 54
succeed (method), 59
symmetric (attribute), 61

tactic (set), 34
tag (attribute), 61
term (set), 28, 43
terms (field), 49
that (fact), 113
THEN (attribute), 61
then (command), 44
theorem (command), 44
theorem (set), 29, 43
theorems (command), 44
theorems (field), 46
theory (field), 49, 51
theory (set), 46
thesis (term), 51, 53
this (fact), 51, 52, 61, 62
this (method), 60, 61
this (term), 51, 53
thus (command), 61
trans (attribute), 155
transform-goal (function), 53
Tutch (system), 10, 82, 88
type (set), 28, 43
typedef (command), 179, 180
types (field), 46

ultimately (command), 148
unfold (method), 60
unify (function), 52
using (field), 49

var (set), 44
vectors, 26

with (command), 61

	Introduction
	Motivation
	Related work
	Real theorem proving environments
	Experiments on human-readable proofs

	The Isar approach to formal proof documents
	Notions of proof according to Isar
	Example: the Knaster-Tarski Theorem
	Presentation format: typeset document output
	Primary proof: human-readable source
	Primitive format: internal proof terms

	Overview of the thesis
	Part I: Foundations
	Part II: Techniques
	Part III: Applications

	I Foundations
	Preliminaries
	Basic mathematical notions
	Minimal Higher-Order Logic
	Types and terms
	Propositions and theorems

	Definitional theory extensions
	Simple definitions
	Weakened definitions
	Overloaded definitions

	Higher-order resolution
	Hereditary Harrop Formulas
	Fundamental inference rules

	The Isabelle/Pure framework

	The Isar proof language
	Introduction
	Syntax and semantics
	Isar commands
	Basic types of commands
	Isar/VM transitions
	Recovering static syntax

	Generic support for natural deduction
	Context elements
	Methods and attributes
	Derived commands

	Further concepts
	Casual term abbreviations
	Formal comments and antiquotations
	Type inference and polymorphism

	Example: First-Order Logic
	Formal development
	Syntax
	Propositional logic
	Equality
	Quantifiers

	Discussion
	Generic proof support for object-logics
	Natural deduction schemes
	Declarative versus operational theorem proving
	Further expressions of natural deduction

	II Techniques
	Advanced natural deduction
	Introduction
	Basic techniques
	General context elements
	Local facts and goals
	Mixed forward and backward reasoning
	Raw proof blocks
	Non-atomic statements

	Generalized elimination
	Obtaining contexts
	Supporting realistic soundness proofs
	Common patterns of generalized elimination

	Proof by cases and induction
	Immediate patterns of cases and induction
	Rules and cases
	Proof methods
	Common patterns of cases and induction
	Induction with non-atomic statements

	Discussion
	Context manipulations in Mizar
	Second-order schemes in Mizar and DECLARE
	Generalized case-splitting

	Calculational reasoning
	Introduction
	Foundations of calculational reasoning
	Calculational sequences
	Calculational elements within the proof language
	Rules and proof search

	Common patterns of calculational reasoning
	Variation of rules
	Variation of conclusions
	Variation of facts
	Variation of general structure

	Discussion
	Iterated equalities in Mizar
	Dijkstra's universal calculational proof format
	Degenerate calculations and big-step reasoning

	III Applications
	The Isabelle/HOL application environment
	The HOL logic
	Simply-typed set theory
	Primitive definitions

	Advanced definitional packages
	Inductive sets and types
	Recursive function definitions
	Extensible records
	Axiomatic type classes

	Automated proof methods
	Incorporating arbitrary proof tools
	Basic types of proof methods

	The main Isabelle/HOL library
	Discussion
	Theory specifications versus proofs
	Proof methods and relevance of facts

	Example: Higher-Order Logic
	Minimal Higher-Order Logic
	Simply-typed lambda-terms
	Basic logical connectives

	Extensional equality
	Further connectives
	Definitions
	Derived rules

	Classical logic
	Hilbert's choice operator
	Concrete types and type definitions
	Basic characterization of type definitions
	Derived rules of type definitions

	Discussion: Isar techniques

	Example: Rational numbers
	Motivation
	Quotient types
	Equivalence relations and quotient types
	Equality on quotients
	Picking representing elements

	Rational numbers
	Fractions over integers
	Rational numbers

	Discussion
	Isar techniques
	HOL techniques
	Arithmetic proof tools

	Example: Unix security
	Motivation
	Introduction
	The Unix philosophy
	Unix security
	Odd effects

	Unix file-systems
	Names
	Attributes
	Files
	Initial file-systems
	Accessing file-systems

	File-system transitions
	Unix system calls
	Basic properties of single transitions
	Iterated transitions

	Executable sequences
	Possible transitions
	Example executions

	Odd effects --- treated formally
	The general procedure
	The particular setup
	Invariance lemmas
	Putting it all together

	Discussion
	Isar techniques
	Efficiency of Isabelle/Isar proof processing

	Conclusion
	Stocktaking
	Future work

	Bibliography
	Index

